Operating Instructions

Power Analyzer NORMA 4000 NORMA 5000

CE

LEM NORMA GmbH

Liebermannstraße F01 CAMPUS 21 A-2345 Brunn am Gebirge AUSTRIA Tel.: +43(0)2236-691-0 E-Mail: Ino@lem.com Internet: www.lem.com

Order no.:EO1111GVersion:Revision GDate:08 / 2005

The technical data contained in this document is subject to changes without prior notice, due to continued product development and improvements made by the manufacturer.

© LEM NORMA GmbH, All rights reserved.

Contents

1	Abo	ut this D	ocument	3				
	1.1 1.2		ent structure nd symbols					
_		U						
2	Gen	General Safety Instructions						
	2.1	Safety i	instructions on the device housing	6				
3	Desi	gn and f	functions	7				
	3.1	Termina	als (rear of housing)	7				
	3.2		ng controls and display					
	3.3	Functio	ns	. 10				
4	Star	tup		. 11				
	4.1	Checkir	ng of delivery	. 11				
	4.2		tion and switching on					
5	Con		to Circuits					
5	5.1		ting sequence					
	5.1 5.2							
	5.3		e measurement					
		6.3.1	Direct connection					
	5	.3.2	With shunt	. 14				
	-	.3.3	With voltage and current transducer					
	 5.4 Aron circuit (triaxial/guard technique) 5.4.1 Direct connection 5.4.2 With shunt 							
	5.4.3 With voltage and current transducer							
		5-pnase	e measurement in 4-wire system Direct connection					
	-	.5.2	With shunt					
~	0							
6	Simp	Die Weas	surement	. 21				
7	Con	figuratio	n	. 22				
	7.1		General Setup / Call up system information screen					
	7.2	Load co	onfiguration	. 23				
	7.3		re data transfer to printer and PC					
	7.4 7.5		Ire average time and synchronisation					
	7.5 7.6		date and time ire current and voltage channels					
	 7.6 Configure current and voltage channels							
	7.9 Save configuration							
	7.10	Delete	configuration	. 37				
	7.11	Unders	ampling / Aliasing	. 37				
8	Meas	suring p	rocess	. 39				
	8.1	• •	measuring					
	8.2		e voltage, current and power	. 40				
	-	.2.1	View the measured values for the individual channels	. 40				
	-	.2.2	View totals of all measured values					
		.2.3	Compare measured values					
	8.2.4 View fundamentals8.2.5 User defined screen view							
	ð	.z.o		. 40				

	 8.3 Change view mode	. 47 . 47 . 48 . 49 . 50 . 50 . 50 . 52 . 53 . 54 . 56 . 56
9	PI1 Process Interface (optional)	. 57
	9.1 Pin assignment	
	9.2 Measured values	. 57
	9.3 Configuring PI1	
	9.4 Measuring with PI19.5 PI1 - technical data	
	9.5.1 8 inputs (analog/digital)	
	9.5.2 4 digital inputs for the detection of the sense of rotation	. 63
	9.5.3 4 outputs (analog)	. 64
10	Formulas	. 65
	10.1 Direct current	
	10.2 Alternating current	
	10.3 Fundamental and harmonics	
	10.4 Frequency analysis10.5 Uncertainty of measurement	. 00 66
11	Transport and Storage	
.1.1		
	11.1 Transport 11.2 Storage	
		67
12	Warranty	
12 13		. 67
	Warranty	. 67 . 67
13	Warranty Recalibration Maintenance	. 67 . 67 . 67
13 14	Warranty Recalibration Maintenance Decommissioning and Disposal	. 67 . 67 . 67 . 68
13 14	Warranty Recalibration Maintenance	. 67 . 67 . 67 . 68 . 68
13 14	Warranty Recalibration Maintenance Decommissioning and Disposal 15.1 Shutting down 15.2 Recycling and disposal 15.3 Packaging	. 67 . 67 . 67 . 68 . 68 . 68 . 68
13 14	Warranty Recalibration Maintenance Decommissioning and Disposal 15.1 Shutting down 15.2 Recycling and disposal. 15.3 Packaging 15.4 Housing	. 67 . 67 . 67 . 68 . 68 . 68 . 68 . 68
13 14 15	Warranty Recalibration Maintenance Decommissioning and Disposal 15.1 Shutting down 15.2 Recycling and disposal 15.3 Packaging 15.4 Housing 15.5 Electronic components	. 67 . 67 . 67 . 68 . 68 . 68 . 68 . 68 . 68
13 14	Warranty Recalibration Maintenance Decommissioning and Disposal 15.1 Shutting down 15.2 Recycling and disposal 15.3 Packaging 15.4 Housing 15.5 Electronic components Technical Data	. 67 . 67 . 67 . 68 . 68 . 68 . 68 . 68 . 68 . 68
13 14 15	Warranty Recalibration Maintenance Decommissioning and Disposal 15.1 Shutting down 15.2 Recycling and disposal 15.3 Packaging 15.4 Housing 15.5 Electronic components Technical Data 16.1 Technical data NORMA 4000	. 67 . 67 . 67 . 68 . 68 . 68 . 68 . 68 . 68 . 68 . 68
13 14 15	Warranty Recalibration Maintenance Decommissioning and Disposal	. 67 . 67 . 67 . 68 . 68 . 68 . 68 . 68 . 68 . 68 . 69 . 72
13 14 15 16	Warranty	. 67 . 67 . 67 . 68 . 68 . 68 . 68 . 68 . 68 . 68 . 68
13 14 15	Warranty	. 67 . 67 . 67 . 68 . 68 . 68 . 68 . 68 . 68 . 68 . 68
13 14 15 16	Warranty	. 67 . 67 . 68 . 68 . 68 . 68 . 68 . 68 . 68 . 68
13 14 15 16	Warranty	. 67 . 67 . 68 . 68 . 68 . 68 . 68 . 68 . 68 . 68

1 About this Document

1.1 Document structure

This document consists of several chapters. Within these chapters, shoulder headings in the margin identify sections in the text focussing on the respective topic or procedure. Example:

"View details" The text belonging to this shoulder heading informs you on how the details of a measured value can be viewed, including introductory notes, safety instructions, hints and tips, instructions on procedures, figures and tables, if any.

1.2 Signs and symbols

The following signs and symbols are used in this document:

Symbol	Description
☑	identifies a requirement. This requirement must be met before you can proceed with the task described in this section of
	the text.
	identifies a mandatory action.
	You are requested to carry out a specified task.
• - or - •	identifies a mandatory action to which there is an alternative procedure. The alternative procedure is introduced with "– or –" or by a left indent.
Í	identifies general information and hints. In the related section of the text, you find important information regarding a certain system feature or procedure.
0	identifies important information. The related information and instructions must always be strictly followed.
	identifies a warning relating to a risk to life and limb from electric shock.
	If the instructions are not strictly adhered to, there is an inevitable risk to life and limb.
$\mathbf{\Lambda}$	identifies a warning relating to a potential risk or dangerous situation.
$\overline{ : }$	If the instructions are not adhered to, there is a risk of death, injury or damage to property.

Text formats	Format	Description		
	Detail	Names of software and operating elements, lettering on the device as well as numbers and text shown on the display are printed in <i>italics</i> .		

Symbols

2 General Safety Instructions

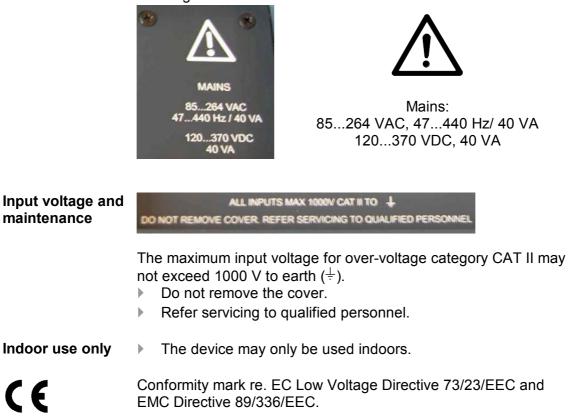
The design and manufacture of this device conform to the latest state of technology and the safety standards laid down in IEC 61010-1/ 2nd edition. If used improperly, there is a risk of damage to persons and property.

Protection class The device is assigned to protection class I according to IEC 61010-1 and is equipped with a protective earth connector.

QualifiedThe device may only be operated by suitably qualifiedpersonnelpersonnel.

For the purpose of these instructions, all persons who are familiar with the installation, assembly, connection, inspection of connections and operation of the analyzer and who have completed training in at least one of the following areas:

- switching on/off, enabling, earthing and identification of electrical circuits and devices/systems according to the applicable safety standards;
- maintenance and operation of appropriate safety gear, in accordance with the applicable safety standards;
- first aid.

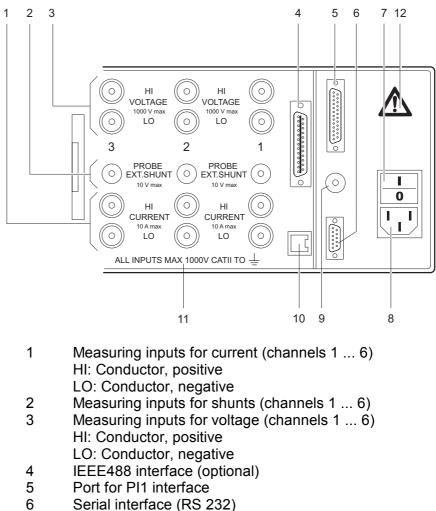

Safe operation • Ensure that all persons using the device have read and fully understood the operating manual and safety instructions.

- The device may only be used under certain ambient conditions. Ensure that the actual ambient conditions conform to the admissible conditions laid down in chapter "Technical data".
- During operation, ensure that the cooling vents are not obstructed.
- Always comply with the instructions in chapter "Transport and storage".
- Proper use
 Do not use the device for any other purpose than the measuring of voltages and currents that are within the measuring ranges and categories, including voltage to earth, laid down in chapter "Technical Data". Improper use shall void all warranty.
- Warranty The warranty period for fault free operation is limited to 2 years from the date of purchase.
 - The warranty period for accuracy is 2 years.
- **Electrical** Ensure that the power and connecting cables used with the device are in proper working order.
 - Ensure that the protective earth connector of the power lead is connected according to the instructions to the low-resistance unit earth cable.
 - Ensure that the power and connecting cables as well as all accessories used in conjunction with the device are in proper working order and clean.

		Install the device in such a way that its power cable is accessible at all times and can easily be disconnected. For connection work, do not work on your own but in teams of at least two persons. Do not use the device, if the housing or an operating element is damaged.
Risks during operation	•	Ensure that the connected devices work properly. In the case of a direct connection to current circuits (without transformer or shunt), ensure that the circuit is protected to max. 16 A.
Maintenance and repairs		Do not open the housing. Do not carry out any repairs and do not replace any component parts of the device. Damaged connecting and power leads must be repaired or replaced by an authorised service technician. Damaged or defective devices may only be repaired by authorised, specialised technicians.
Accessories	•	Only use the accessories supplied with the device or specifically available as optional equipment for your model. Ensure that any third-party accessories used in conjunction with the device conform to the IEC 61010-2-031/-032 standard and are suitable for the respective measuring voltage range.
Shutting down	•	If you detect any damage to the housing, controls, power cable, connecting leads or connected devices, immediately disconnect the unit from the power supply. If you are in doubt as regards the safe operation of the device, immediately shut down the unit and the respective accessories, secure them against inadvertent switching on and bring them to an authorised service agent.

Mains connection

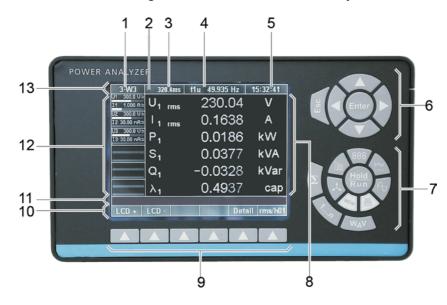
2.1 Safety instructions on the device housing



The mains connection must conform to the following ranges/values:

3 Design and functions

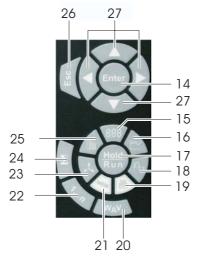
This chapter provides an overview of the terminals, ports and interfaces of the power analyzer, as well as a list of display and operating devices and a brief introduction to the basic functions of the unit.


3.1 Terminals (rear of housing)

- 7 Power switch
 - I: ON
 - 0: OFF
- 8 Mains connection
- 9 Input for external synchronisation signal
- 10 IF2 network adapter (LAN) (optional)
- 11 Warning regarding max. voltage to earth
- 12 Warning symbol; danger, observe operating instructions

3.2 Operating controls and display

The display, operating controls and function keys are located at the front of the device. The display consists of a menu bar, a section in which the measured values and the channel settings are shown and the assignment bar for the function keys.



1 Display of configuration; menu item *General Setup*

- 2 Menu item Integration Setup / Motor-Generator Setup
- 3 Measurement status / display of average time
- 4 Display of synchronisation source frequency; menu item *Timing & Sync Setup*
- 5 Display of time; menu item *Clock Setup*
- 6 Navigation keys
- 7 Measuring keys
- 8 Display for measured values
- 9 Function keys
- 10 Assignment bar for function keys
- 11 Information row
- 12 Status display for channels 1 to 6 (including measuring range, coupling and modulation bar); menu items *Current Channel Setup* and *Voltage Channel Setup*
- 13 Menu bar with menu items

Status	Description			
M Memory record active				
T Wait for Trigger start condition(memory)				
R	Measurement active (Run mode)			
Н	Measurement stopped (Hold mode)			
ſ	Integration of selected values active			

Navigation and measuring keys

- 14 *Enter*: confirm; call up menu
- 15 Numerical display
- 16 Recorder
- 17 Hold/Run: start/stop measurement
- 18 Oscilloscope diagrams
- 19 Print
- 20 Show power, current, voltage
- 21 Save
- 22 Select channel
- 23 Vector display
- 24 Show totals of all channels
- 25 Frequency analysis
- 26 *Esc*: cancel, up one menu level
- 27 Cursor keys: up/down; left/right

Navigation through display

the display and the menus. The active menu item, display or entry field in which your cursor is located is backlit.

Use the navigation keys (6, page 8) and (27) to navigate through

Press *Esc* (26) to cancel an entry without saving or to go to the next higher menu level.

Press *Enter* (14) to call up a menu or to confirm an entry made in a menu.

Press the measuring keys (7, page 8) and (15) to (25) to select the display mode and the saving/output functions for measured values.

The assignment of the function keys (9, page 8) varies, depending on the current menu. The current key assignment is shown on the assignment bar (10, page 8) located above the function keys.

Overview of
function keysThe assignme
display or mer

The assignment of the function keys varies, depending on the display or menu you have selected.

Name	Function			
Default	Scale axes automatically			
DELETE	Delete configuration			
Detail	View details of a measured value			
Freq Set frequency analysis filter				
Info	View system information and version number of unit firmware			
LCD -	Reduce brightness of display			
LCD +	Increase brightness of display			
lin/log	View linear/logarithmic scale			
LOAD	Load configuration			
mode	View table with harmonics			
Offset	Adjust zero (with cursor keys)			
rms/h01	View rms values or H01 fundamental			
SAVE	Save configuration			
Scale	Adjust scales of axes (with cursor keys)			
scroll	Scroll through display			
Set all	Adopt configuration or set value for all channels			
tab/gra	View measured values in table/graph			
U/I	Switch between voltage channel configuration and current channel configuration (in General Setup)			
zoom	Adjust scales of axes (with cursor keys)			
ſ	View electrical work reference power or recuperated power			
∫ Clear	Set electrical work integration to zero			
∫ Start	Start electrical work integration			
∫ Stop	Stop electrical work integration			

3.3 Functions

The power analyzer allows for the analysis of currents from DC to several MHz. Voltage values up to 1000 V and currents up to 20 A are measured accurately, and the respective real, idle and apparent power is calculated. The limit of error is between 0.1% and 0.3%, depending on the model. For DC and AC up to a few MHz, it is not affected by the wave shape, frequency or phase position. The measuring range can be extended by connecting shunts or clamps. When extending the range using third-party shunts or clamp the extra errors due to these devices should be considered. The device caters for simultaneous measuring in up to 6 channels.

4 Startup

4.1 Checking of delivery

- Before commencing work with the analyzer, check the delivery to ensure that it is compete, using the following list and the delivery specifications:
 - 1 power analyzer
 - 1 operating manual
 - 1 mains cable
 - 1 calibration certificate
 - 1 to 6 voltage and current channel modules, according to the delivery specifications

4.2 Installation and switching on

- Installation
- Follow the safety instructions regarding ambient conditions and location of installation.

Danger! Risk of electrocution

- Caution! The device is connected to the power mains, and a number of internal components are live with dangerous voltage levels. To remain safe during operation, the device must be equipped with a low-resistance connection to the earth.
 Therefore check the mains socket and its wiring!
 - Place the device onto a clean and stable surface.
 - If necessary adjust the feet at the base of the unit to improve the view onto the display.

Switching device on

- Connect the device to the mains socket, using the power lead.
 - Set the power switch at the rear of the housing to position "I". The device is now ready for operation. The start screen is displayed.

1:W3	PI R 6	00.0ms	f1u	Hz ′	0:30:08
11 300.0 mU≃ 11 30.00 mR≃	U ₁	ms ±	0.0	00	mV
l2 300.0 mU≃ I2 30.00 mH≃	•	ms ±	0.00	00	mА
l3 300.0 mV≃ 3 30.00 mR≃	P ₁		0.000	00	m₩
	s,	±	0.00	00	mVA
	Q.	+			mVar
	λ_1				
RS		1, Main			
LCD +	LCD -		el/mech	Detail	rms/h01

Switching device off

Set the power switch at the rear of the housing to position "0".
If the device is not to be used for a prolonged period of time, disconnect the plug from the mains socket.

5 Connection to Circuits

Ŵ	 Danger! Risk of electrocution! By connecting the unit to circuits, the terminals and certain parts inside the device are live. In order to ensure safe operation, first connect the device to the power supply. If possible, open the circuit before establishing a connection to the analyzer. Prior to connecting the circuits, ensure that the maximum
	 measuring voltage and max. voltage to earth (1000V CATII and 600V CATII respectively) are not exceeded. Do not use leads and accessories that do not fulfil the relevant safety standards, as this could lead to serious injury or death from electric shock!

5.1 Connecting sequence

When connecting a circuit to the power analyzer, for safety reasons, proceed in the sequence outlined below:

- 1. Connect the power analyzer to the mains socket. The analyzer is now connected to the protective earth wire.
- 2. Switch on the power analyzer.
- 3. Connect the measuring circuit as shown in the connection diagram.

Ensure that the phase is connected to HI so that the energy flow is from HI to LO; to ensure that the measured values are indicated correctly.

4. Connect the circuit to the power supply.

5.2 Overview

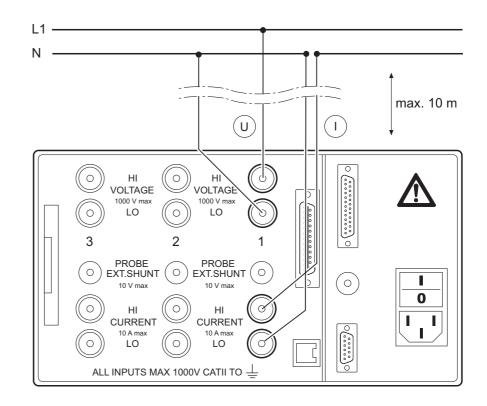
The power analyzer offers the following options for connection:

Measurement	direct	with shunt	with transducer
1-phase measurement	page 13	page 14	page 15
Aron connection	page 16	page 17	page 18
3-phase measurement in 4- wire system	page 19	page 20	-

Note

When connecting a 4-channel device for electrical efficiency analysis, the 3-phase power cables for this measurement should be connected to the measuring channels 1 to 3, so that the efficiency can be calculated and displayed directly on the device.

5.3 1-phase measurement


5.3.1 Direct connection

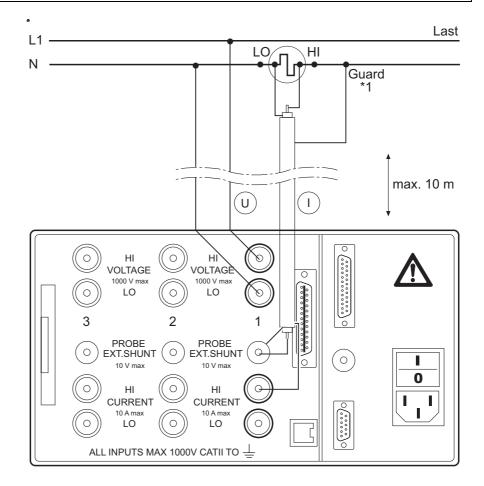
- Ensure that there is no overload at the current input of the power analyzer.
- If necessary, install appropriate fuses.

Danger! Risk of electrocution!

Risk of injury when touching connections, internal circuits and measuring devices that are not earthed.

5.3.2 With shunt

b


Danger! Risk of electrocution! Do not touch sense terminals! The sense terminals at the shunts are powered with the same voltage as the power connections. Shunts are not isolated.

- Never touch the sense terminals at the shunts.
- The connecting leads to the shunts should be as short as possible in order to prevent noise voltages.

Danger! Risk of electrocution!

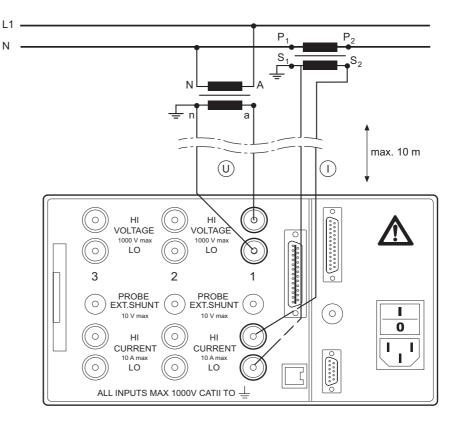
Risk of injury when touching connections, internal circuits and measuring devices that are not earthed.

^{*1} We recommend using MCS measuring leads for triaxial shunts and MCP leads for planar shunts. Triaxial shunts are equipped with guard connectors in the plugs, while planar shuts are equipped with guard sockets.

5.3.3 With voltage and current transducer

Risk of damage to transducer, due to overload!

Check rating of transducer.


Note

When using transducers, please note that transducer errors limit the measuring bandwidth and reduce the intrinsic uncertainty.

Danger! Risk of electrocution!

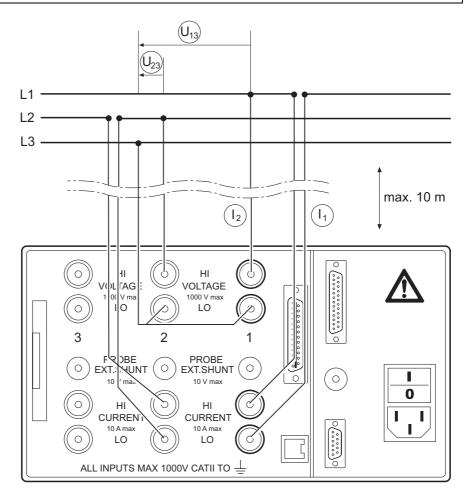
Risk of injury when touching connections, internal circuits and measuring devices that are not earthed.

5.4 Aron circuit (triaxial/guard technique)

5.4.1 Direct connection

the Aron circuit is only available for 3-wire networks. It is only required to measure two phases (currents I1 and I2 in the connection diagram), as I1+I2+I3 must be 0.

Important

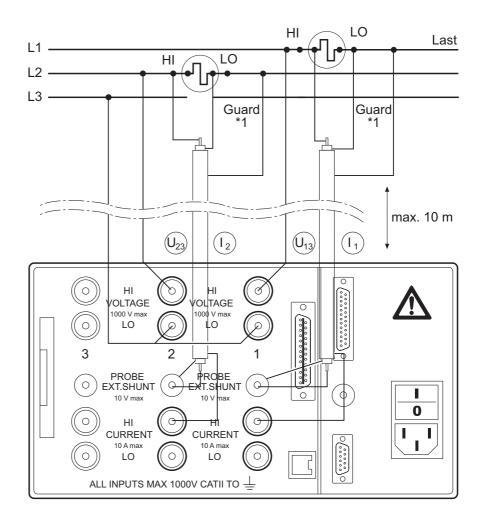

In most cases, the Aron circuit is not acceptable for measurements on inverters, as there are capacitive leakage currents from the windings to the housing!

- Ensure that there is no overload at the current input of the power analyzer.
- If necessary, install appropriate fuses.

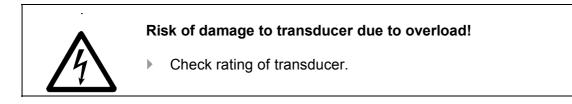
Danger! Risk of electrocution!

Risk of injury when touching connections, internal circuits and measuring devices that are not earthed.

5.4.2 With shunt


Danger! Risk of electrocution! Do not touch sense terminals! The sense terminals at the shunts are powered with the same voltage as the power connections. Shunts are not isolated.

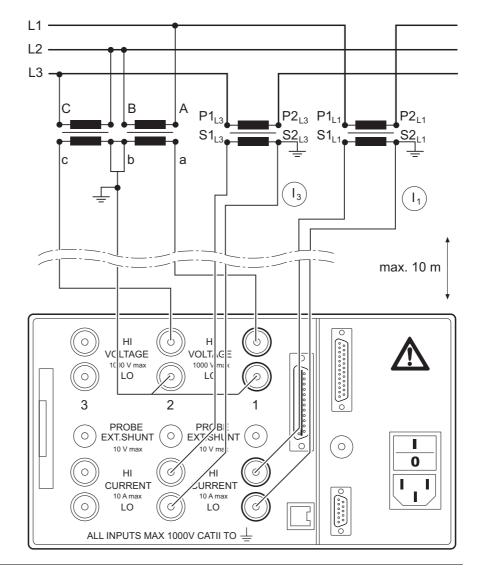
- Never touch the sense terminals at the shunts.
- The connecting leads to the shunts should be as short as possible in order to prevent noise voltages.



Danger! Risk of electrocution!

Risk of injury when touching connections, internal circuits and measuring devices that are not earthed.

5.4.3 With voltage and current transducer


Note

When using transducers, please note that transducer errors limit the measuring bandwidth and reduce the intrinsic uncertainty.

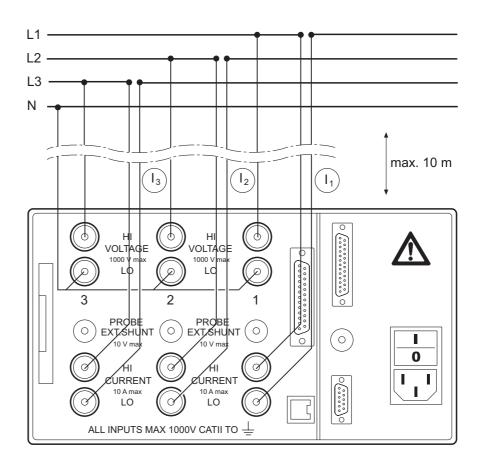
Danger! Risk of electrocution!

Risk of injury when touching connections, internal circuits and measuring devices that are not earthed.

5.5 3-phase measurement in 4-wire system

5.5.1 Direct connection

Note

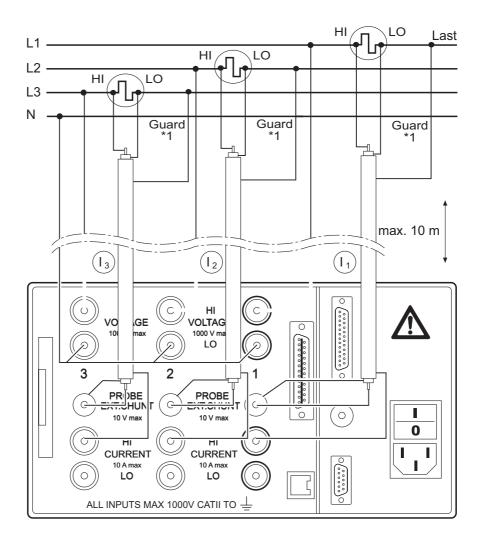

3-phase measurements in 3-wire systems are only possible via a star point adapter (creates neutral point) plugged into the voltage inputs.

- Ensure that there is no overload at the current input of the power analyzer.
- If there is a potential risk of overload at the current input, incorporate a shunt or transducer into the circuit.
- If necessary, install appropriate fuses.

Danger! Risk of electrocution!

Risk of injury when touching connections, internal circuits and measuring devices that are not earthed.

5.5.2 With shunt


Danger! Risk of electrocution! Do not touch sense terminals! The sense terminals at the shunts are powered with the same voltage as the power connections. Shunts are not isolated.

- Never touch the sense terminals at the shunts.
- The connecting leads to the shunts should be as short as possible in order to prevent noise voltages.

Danger! Risk of electrocution!

Risk of injury when touching connections, internal circuits and measuring devices that are not earthed.

6 Simple Measurement

This chapter contains an introduction to the measuring procedures that can be carried out with the power analyzer, based on a simple sample measurement. The example used here is a measurement at the frequency converter with a fundamental below 100 Hz.

- **Connection to circuits** Connect the outputs of the frequency converter to the current and voltage channels of the power analyzer (see chapter 5.5.1 "Direct connection", page 19).
- **Configuration** Switch on the power analyzer.

1:W3	PI R	309.9ms	f1u 22.58	3 Hz 📑	10:47:32
U1 100.0 V≃ I1 300.0 mA≃	U ₁	rms	32.0	00	V
U2 100.0 U≃ I2 300.0 mR≃	\mathbf{I}_{1}	rms	161.	53	mA
U3 100.0 V≃ I3 300.0 mA≃	P_1		1.20	00	W
	S ₁		5.1	17	VA
	Q ₁		5.0	03	Var
	λ_1		0.23	22	ind
RS	Phas	e 1, Maiı	1		
LCD +	LCD ·		el/mech	Detail	rms/h01

Ensure that factory configuration 1:W3 is loaded (see chapter 7.2: "Load configuration", page 23).

The settings of factory configuration 1:W3 are as follows:

- Low-pass filter on, set to 100 Hz
- Average time set to approx. 300 ms, depending on the measured frequency
- Synchronisation source is U1.

Measuring

Press measuring key WAV three times.

The rms values for power in channels 1 ... 3 are displayed.

1:W3	PI	309.9ms	f1u 22.58	5 Hz	10:49:12
U1 100.0 V≃ I1 300.0 mR≃	P 1		1.1	77	VV
U2 100.0 V≃ I2 300.0 mA≃	P 2		1.1	43	W
U3 100.0 V≃ I3 300.0 mA≃	Ρ3		1.1	50	W
	λ_1		0.22	92	ind
	λ_2		0.22	63	ind
	λ_3		0.22	59	ind
RS	Pow	er, Pha	se 1/2/3		
LCD +	LCD	-	el/mech	ſ	rms/h01

The numbers in subscript (e.g. U_1 or U_2) indicate the respective channel.

Note

As the power analyzer requires a complete voltage and current cycle for an accurate measurement, a full period is automatically added to the average time of 300 ms of configuration *1:W3*, and the new average time is displayed. Example: 309.9 ms at 22.585 Hz, corresponding to 7 periods.

7 Configuration

Prior to measuring, you must configure the default settings, adjust channels, measuring ranges and times and synchronise current and voltage sources.

If you wish to reapply certain settings at a later stage, you must save the configuration. You have the option to save up to 15 userdefined configurations, which are automatically assigned the names *10:USER* to *24:USER*.

Configuration 1:W3

When first switching on the analyzer, factory configuration *1:W3* is used. This configuration is suitable for measurements with fundamentals below 100 Hz (average time 300 ms, synchronisation source U1, low-pass filter 100 Hz).

Note

You have the option to modify the settings of configuration 1:W3. If you wish to save the new settings, you must do this in a new configuration. Default configuration 1:W3 cannot be overwritten. You may save new settings in the process or at the end of the configuration procedure. Settings that have not been saved are lost when the device is switched off or when a different configuration is loaded.

You may ...

- modify configuration 1:W3 loaded upon startup of the device,
- load an existing configuration,
- create a new configuration,
- delete or modify an existing configuration.

The power analyser features the following configuration menus:

Configuration menu	Description
General Setup	Interfaces, printer output
Timing & Sync Setup	Average time and synchronisation
Clock Setup	Date and time
Current Channel Setup	Current channels 1 6
Voltage Channel Setup	Voltage channels 1 6
Motor / Generator Setup	PI1 process interface inputs
Analog Output Setup	PI1 process interface outputs
Integration Setup	Integration function / energy

5 steps

- To set up a configuration, complete the following steps:
 - Call up General Setup
 - Configure current and voltage channels
 - Configure average time and synchronisationConfigure data transfer to printer and PCSave configuration

For instructions on how to configure the PI1 process interface, please refer to chapter 9: "PI1 Process Interface (optional)", page 57

For instructions on how to delete a configuration, please refer to chapter 7.10 "Delete configuration", page 37.

7.1 Call up General Setup / Call up system information screen

Call up General Setup Analyzer is switched on; start screen is displayed.

Move the cursor to menu item *General Setup* that shows the name of the currently loaded configuration and press *Enter*. The *General Setup* menu is displayed.

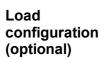
1:W3	PI R 309.	9ms f1u	22.588	Hz 1l	1:50:16
U1 100.0 U≃ I1 300.0 mA≃		Gener	al Se	tup:	
U2 100.0 U≃					
12 300.0 mA≃ U3 100.0 V≃					
03 180.8 V ± 13 300.0 nA≃	Printer :	Barren and a second second		Scree	1 -> ·
	and the second second second second	RS232		HIM	
	GPIB :				
	LAN :		255		Telnet
RS	Select Pr	inter Out	put Dev	ice	
LOAD	SAVE DI	ELETE			Info

Call up system information screen

General Setup menu is displayed.

Press function key F6 *Info*. The *System Info* menu is displayed.

This screen shows the main information about the unit.


Line	Description
System	Devices type and sample rate
Phases	Type and number of equipped power phases
Options	Equipped interfaces and options
Serial	Serial number
Version	Firmware version

7.2 Load configuration

Note

If you have not set up and saved a new configuration before, you are currently working with factory configuration *1:W3*.

Proceed as described in chapter 7.3: "Configure data transfer to printer and PC" 23.

Press function key LOAD.

A list showing all existing configurations is displayed.

Select a configuration and confirm with Enter. The name of the loaded configuration, e.g. 10:USER, is displayed in menu item General Setup.

To modify the loaded configuration, proceed as described below.

7.3 Configure data transfer to printer and PC

If you wish to use an internal or external printer, of if you intend to connect a PC, you must configure the parameters for the data exchange. This procedure consists of the following steps:

- Configure external printer
- Configure interface to PC
- Configure RS 232
- Configure IEEE488 device address
- Configure LAN network addresses

Note

The actual selected Interface is displayed in the Information row (see Chapter 3.2). $RS \rightarrow RS232$, $GP \rightarrow IEEE488$, $EN \rightarrow Ethernet$, US \rightarrow USB

In the General Setup menu, define the following settings:

Line	Function
Printer	Configure printer
Syst IF	Configure interface to PC
RS232	Configure RS232 interface
GPIB	Configure IEEE488 device address
LAN	Configure network addresses

The device can be equipped with an IEEE 488 and/or an Ethernet interface instead of a serial RS232 interface.

Configure external printer

Settings	Description
RS232	Print via RS232 interface on external printer or
intern	use internal printer
On key	Printer activated
Off	Printer deactivated
Screen	Print screenshot
Num	Print numerical data
1/page	Print 1 screenshot per page
3/page	Print 3 screenshots per page
PCL	PCL printer
EPS 9p	Epson 9-pin printer
EPS 24p	Epson 24-pin printer
S/W	Printing color is black/white

Note

The *PCL* setting is suitable for most inkjet printers.

- Move the cursor to the field with the value you wish to change, enter the new value and confirm with ENTER.
- Select the settings and confirm with *Enter*. The applied settings are shown in line *Printer*.

Configure	
interface to	РС

Settings	Description
RS232	Serial interface
GPIB	IEEE488 interface (optional)
USB	USB2.0 interface (optional)
LAN	Ethernet (LAN) interface (optional)
SCPI	Standard set of commands
D5255S	Previous set of commands (emulation)
D5255T	Previous set of commands (emulation)
D5255M	Previous set of commands (emulation)

- Move the cursor to the field with the value you wish to change, enter the new value and confirm with ENTER.
- Select the settings and confirm with *Enter*.
 The applied settings are shown in line *Syst IF*.

Note

A driver CD to install USB support to the PC is included in the delivery content. USB interface is installed as a virtual COM port.

Configure RS 232

Settings	Description
1152001200	Baud rate of serial interface
8/N/17/O/1	Data bits/parity/stop bits of the serial interface
none	Handshake (protocol) of the serial interface
HW	
XON	

Note

The factory settings of the RS232 interface are optimised for communication with a PC. We recommend adjusting the settings of the PC to suit these parameters.

Factory configuration: 115200 8/N/1 HW

- At the connected PC, call up the Device Manager and open the dialog showing the settings for the serial port.
- Adjust these settings to those of the power analyzer.

Note

If the cable connecting the two devices is extremely long, or if the PC is unable to handle data at the set rate, you might consider adjusting the settings for the RS232 at the power analyzer to those of the PC. To do this, proceed as follows:

- Move the cursor to the first field in line *RS232*.
- Enter the settings for baud rate, data bits/parity/stop bits and handshake and confirm with *Enter*.
 - The new settings are now shown in the fields of line *RS232*.
- Save the settings with SAVE in the desired configuration.

Configure GPIB address The GPIB port is an IEEE488 interface. It works like an IP address in a network. The power analyzer is assigned a unique device address (numerical code) for communication on the GPIB bus. If more than one device is used simultaneously in the network, the device address can be adjusted accordingly.

- Move the cursor to the field in line GPIB and press Enter. A list with available addresses is displayed.
- Select an address that has not yet been assigned at the GPIB bus and confirm with *Enter*.

The selected address is shown in line GPIB.

Configure Ethernet

Settings	Description
0	Device IP address
0	IP subnet mask address
0	IP gateway address
Telnet	Protocol (fixed)

Before the Ethernet interface can be operated properly, enter the correct network addresses.

- Move the cursor to the field in line LAN and press Enter. A window with a numerical entry field is displayed.
- Enter the required address and confirm with Enter. The address is shown in line LAN.
- Save the settings with SAVE in the desired configuration.

Press *ESC* to leave the entry field without changing the address.

Note

The default address is 0.0.0.0 (factory settings). Addresses can only be entered in conjunction with IP network addressing (e.g. address 193.0.255.4).

Important

Network addresses are available from your network administrator.

7.4 Configure average time and synchronisation

This configuration concerns important parameters required for the synchronisation of the measuring procedure. To configure these parameters, proceed as follows:

- Call up Timing & Sync Setup
- Enter average time
- Select synchronisation source
- Set trigger level
- Select slope direction
- Select low-pass filter
- Configure signal output

Call up Timing &Move the cursor to menu item Timing & Sync Setup and pressSync SetupEnter.

The *Timing & Sync Setup* menu is displayed. The value in column *Tavg[s]* is highlighted.

Column	Settings	Description
Tavg[s]	15 ms 3600 s	Minimum average time (in seconds)
Src	U1 / I1 U6 / I6 ext	Synchronisation source
Level	Off -150 % +150 %	Fixed average time Trigger level
Lever	-150 % +150 %	(in % of measuring range)
Slope	∕oder ↓	Slope direction
Filter	10 kHz 1k Hz 100 Hz off	Synchronisation filter (filter is not in signal path)
SyOut	On Off	Signal output enabled Signal output disabled (at <i>Sync Ext</i> output)

In the *Timing & Sync Setup* menu, define the following settings:

Set average time The average time is a multiple of the period of the voltage of current source. The settings are automatically adjusted during measuring. Example: the average time is set to 19 ms; at a frequency of 50 Hz, it is automatically adjusted to 1 period, i.e. 20 ms.

Note

Short average times are useful, if you wish to analyse individual periods, measuring even minute interferences. With long average times (e.g. 300 ms at 50 Hz), short-term interferences are not shown.

- ☑ Value in column *Tavg[s]* is highlighted.
- Press Enter.

A window with a numerical entry field is displayed.

Enter the first digit of the average time and confirm with *Enter*. Repeat the above step for the other digits.

The measuring time is entered in seconds. For exponential powers, use the following keys on the numerical keypad:

Exponential power	Кеу
micro [10 ⁻⁶]	μ
milli [10 ⁻³]	m
kilo [10 ³]	k
mega [10 ⁶]	M

- Enter the exponential power and confirm with *Enter*.
- Move the cursor to the return field of the calculator and press Enter.

The average time is shown in column Tavg[s].

Save the settings with *SAVE* in the desired configuration.

OFF, if no synchronisation source is used (e.g. measuring of direct current)

Note To measure the start-up of a machine, you might opt for an external synchronisation signal (0,2Hz to sample rate, max. 50V), as there is otherwise no signal at the beginning of the measuring procedure, and thus no measured values.

- ☑ Value in column *Src* is highlighted.
- Press Enter.
- Select a source or OFF and confirm with Enter.
 The selected source or OFF is shown in column Src.
- Save the settings with *SAVE* in the desired configuration.

Set trigger level

The trigger level is in percentages of the measuring range, and measured from the end value of the range. In factory configuration 1:W3, the trigger level is set to 0%.

Note

By increasing the trigger level, the level of the average is also increased. In other words: if there are several positive slopes in the zero crossing, a higher modulated signal can be triggered.

- ☑ Value in column *Level* is highlighted.
- Press Enter.
- Enter the desired power and confirm with Enter. The value is displayed in column Level.
- Save the settings with *SAVE* in the desired configuration.

Select slope
directionThe value entered here determines the zero crossing at which the
measurement begins, i.e. zero crossing with positive or with
negative slope. In factory configuration 1:W3, a positive slope is
set. The arrow symbol " \uparrow " indicates to a positive slope; symbol " \checkmark "
indicates a negative slope.

- ☑ Value in column *Slope* is highlighted.
- Press Enter.
- Select the desired arrow symbol and confirm with *Enter*. The selected arrow symbol is shown in column *Slope*.
- Save the settings with *SAVE* in the desired configuration.

Select low-pass The low-pass filter enables you to modify signals with high harmonic content (e.g. PWM) so that they are synchronised to the resulting fundamental. This ensures that all measured values refer

to this fundamental. The low-pass filter is not located in the signal path so that the input signal is not in any way interfered with.

- ☑ Value in column *Filter* is highlighted.
- Press Enter.
- Select a value or OFF, depending on the expected fundamental, and confirm with Enter. The entered value, or OFF, is shown in column Filter.
- Save the settings with SAVE in the desired configuration.

Configure signal output

- ✓ Value in column *SyOut* is highlighted.
- Press Enter.
- To activate output, select *ON*.
 - or –
 - To deactivate output, select OFF.
- Confirm with *Enter*.
- The entered value is shown in column SyOut.
- Save the settings with SAVE in the desired configuration.

Note

The synchronisation output is connected at the Sync-BNC plug on the backside of the unit. The output signal is a TTL pulse with 5Volt.

Important

The BNC can be used either as input or output. As soon as the BNC plug is switched to input (*EXT* sync source or *OFF* selected) the sync output menu is automatically switched to *OFF* (disabled).

7.5 Adjust date and time

Note

Normally, date and time must be set only once, as they do not change with different configurations.

Adjust date and time

Move the cursor to menu item Clock Setup and press Enter. The Clock Setup menu is displayed. The value in column Year is highlighted.

- Press Enter, select a year and confirm with Enter. The selected year is displayed.
- Move the cursor to the next field and repeat the above step until the correct date and time are shown.

Menu field *Clock Setup* shows the time in hours, minutes and seconds.

7.6 Configure current and voltage channels

Prior to each measurement, you must configure the device inputs (channels) to be used. The following example explains the configuration procedure for current channel I1: The other current and voltage channels can be configured in the same way.

The configuration procedure consists of the following steps:

- Call up Current Channel Setup
- Configure input range
- Configure scale
- Configure coupling
- Configure anti-aliasing filter
- Call up Voltage Channel Setup

Call up Current Channel Setup Move the cursor to the status display of current channel I1 and press *Enter*.

The *Current Channel Setup* menu is displayed. The first field in column *Auto* of line *11* is highlighted.

1:W3	PI R	680.0	ms f1u	Hz	12:5	i3:00
111_300.0 mU≃	S.F	Liera	ant Ch	annel	Satu	
11 30.00 MR= U2 300.0 mV=		i un i s	anit on	anner	Jeiu	Maria
02 3000 M0 2 12 30.00 mB ≃	Ch	Auto	Range	Scale	CoupF	ilter
U3 300.0 MV ≃ 13 30.00 MH ≃	(H)	ON				
U4 300.0 mU≃	12					
14 30.00 mA~	(B)					
U5 300 0 mU≙	- 14					
15-00-00 official	15					
U6 300.0 MV≃ I6 30.00 MR≏	16					
RS	Sele	ct Aut	oranging			
LOAD	SAV	E DE	LETE Se	it all		U/F

In the Current Channel Setup menu, define the following settings:

Column	Settings	Description
Ch	11 16	Select input (channel)
Auto		Automatic range adjustment
	ON	activated
	OFF	deactivated
Range	30 mA10 A	Measuring range (in ampere or
	30 mV 10 V	volt)
Scale	Scale factor and	Scale for external
	A/V ratio	probes/converters
Coup	AC	Coupling
	DC	
Filter	ON	Filter activated
	OFF	deactivated

Configure input
rangeYou have the option to select automatic range configuration for the
connected current source (*Auto*). Alternatively, you can configure
the range manually (*Range*).
With automatic configuration, the analyzer determines and
selected the correct range for the connected current source.

Automatic range \Box First field in column *Auto* is highlighted.

- Press Enter.
- Select ON and confirm with Enter.
 The selected settings are shown in column Auto.

adjustment (Auto)

If you wish to configure all three current channels in this way, press Set All.

All channels are now set to ON.

Save the settings with *SAVE* in the desired configuration.

Manual range adjustment (Range) To manually configure the range for I1, enter the range in ampere or, if e.g. shunts are used, in volt.

- ☑ First field in column *Auto* is highlighted.
- Press Enter, select OFF and confirm with Enter. Automatic range adjustment is now disabled.
- Move the cursor to the value in column Range and press Enter.
- Select a value in ampere,
 - or –
 - if you use a shunt, select a value in volt.

Note

When a value in volt is entered, automatic configuration (*Auto*) is set to *Off.* Below *Scale*, option menu *A/V* is displayed.

- Confirm with Enter. The settings are shown in column Range. Off is displayed in column Auto.
- If you wish to configure all three current channels in this way, press Set All.
- Save the settings with *SAVE* in the desired configuration.

Configure scale

If you intend to use a shunt or a probe, you must adjust the scale for the output of the measuring signal.

Note

The correct parameter settings are shown on the type plate of the shunt or probe.

You can ...

- enter the transducer ratio (U over I) at the external current meters and instruct the device to calculate the final scale factor
- or
- enter the scale factor at the current transducer so that the final scale factor can be calculated.

The parameters of the formula must be entered as follows:

- scale factor x transducer ratio

whereby

- scale factor: generally "1.0000" (one)
- transducer ratio: current (in ampere) to voltage (in volt)

1.00000

1.0000 A

1.0000 V

Configure

coupling

Important

If you select *Set all* to apply the configuration to all channels, only the scale factor is transferred. If shunt values U/I are entered, the scale factor is always 1, and *Set all* is not available. If probes are used, it is generally easier to enter the transducer ratio, and *Set all* is thus not recommended.

- Move the cursor to the value in column Scale and press Enter. A dialog window showing the scale formula is displayed.
- Select a value for each parameter and confirm with *Enter*. The settings are shown in column *Scale*.
- Save the settings with SAVE in the desired configuration.

By configuring the coupling, you determine the current you wish to analyse. Select *AC* to analyse alternating currents; select *DC* to analyse direct and alternating current.

- Move the cursor to the field in column Coup and press Enter. The options AC and DC are displayed.
- Select AC or DC and confirm with Enter. The settings are shown in column Coup.
- If you wish to configure all three current channels in this way, press Set All.
- Save the settings with *SAVE* in the desired configuration.

Configure filter The anti-aliasing filter is located in the measuring channel. It is a prerequisite for the correct analysis of FFT data. The default configuration is *ON*. The anti-aliasing filter has a cut-off frequency of 1/10 of the sampling frequency. At half the sampling frequency, no signal reaches the A/D converter.

Note

For broadband numerical measurements in lighting technology, set the filter to *OFF*.

If measurements at high frequency are made without filter, it is not possible to correctly analyse the signals, due to aliasing. Please refer to chapter 7.11 "Undersampling / Aliasing" page 37

- Move the cursor to the value in column *Level* and press *Enter*. The options *AC* and *DC* are displayed.
- Select the desired value and confirm with *Enter*. The entered value is shown in column *Level*.
- If you wish to configure all three current channels in this way, press Set All.
- Save the settings with *SAVE* in the desired configuration.

Call up Voltage Channel Setup

- İ
- ☑ Call up Current Channel Setup.

Note

To configure the voltage channels, proceed as described for the current channels.

Press function key U/I.

The Voltage Channel Setup menu is displayed.

1:W3	PLR	600.0	ms f1u	Hz	12:52	:32
U1 300.0 mU≃	NA I	Alt-	an Ch	annal	Cotun	
I1 30.00 mR≌	Voltage Channel Setup:					
U2 300.0 mU≃	Ch	Auto	Range	Scale	CoupFil	ter
12 30.00 mH≃ U3 300.0 mU≃			19822-645		Coupin	
03 300.0 m0 ± 13 30.00 mR≃	· U1	ÖN	300mV	1.00000	DC 0	
U4 300.0 mU≃	U2	ON	300mV	1.00000	DC 0	N
14 30.00 mA≃	U3.	ÖN	300mV	1.00000	DC 0	
U5 300.0 mV≃	-114	ON	300mV	1.00000	DC 0	
15 30.00 mA≃	115	ON	300mV	1 00000	DC 0	
U6_300.0 nV≃	U6		300mV		DC 0	
I6 30.00 mR≃			300112			
			oranging			
LOAD	SAV	E DE	LETE Se	t all	U	/1

Configure voltage channels 1 to 6.

7.7 Switch current input to external input (BNC)

If you want to use an external shunt or probe you have to change the current input from direct measurement to the BNC input. This has to be done in the Current Channel Setup menu.

This procedure consists of the following steps:

- Call up Current Channel Setup _
- _ Switch input
- Configure input range _
- Configure scale _

Switch Current input

- ☑ First filed in column *Range* is highlighted.
- Press Enter, select a voltage range (e.g. 3V) and confirm with Enter.

1:W3	PI	300.	Oms f	Hz	13:47:56	
U1 300.0 mV≃	Current Channel Setup:					
I1 30.00 mA≃	Curr <u>ent Ch</u> annel Setup:					
U2_300.0 mU≃	Ch	Auto	1A †	Seele	CoupFilter	
I2 30.00 mA≃	CII	Aut	300mA	Stale	Coupriter	
U3 300.0 mU≃	11	ON	100mA	1.00000	DC ON	
I3 30.00 mA≃	12	ON	30mA	1.00000	DC ON	
	13	ON	10V	1.00000	DC ON	
			3V		00 011	
			1V			
			300mV +			
			500111 4			
RS	Select Current Range (int = A, ext = V)					
LOAD	SAVE DELETE Set all U / I					

- If you wish to configure all three current channels in this way press Set All.
- Save the settings with SAVE in the desired configuration. The current input is now changed to the external BNC input.

Configure autorange selection

First filed in column *Auto* is highlighted.

- Press Enter, select ON and confirm with Enter.
- If you wish to configure all three current channels in this way press Set All.
- Save the settings with SAVE in the desired configuration.

Auto range is now enabled.

Configure scale

If you intend to use a shunt or a probe, you must adjust the scale for the output of the measuring signal.

Note

The correct parameter settings are shown on the type plate of the shunt or probe.

You can ...

- enter the transducer ratio (U over I) at the external current meters and instruct the device to calculate the final scale factor
- or
- enter the scale factor at the current transducer so that the final scale factor can be calculated.

The parameters of the formula must be entered as follows:

- scale factor x transducer ratio
- whereby
 - scale factor: generally "1.0000" (one)
- transducer ratio: current (in ampere) to voltage (in volt) **Important**

If you select *Set all* to apply the configuration to all channels, only the scale factor is transferred. If shunt values U/I are entered, the scale factor is always 1, and *Set all* is not available. If probes are used, it is generally easier to enter the transducer ratio, and *Set all* is thus not recommended.

- 1.00000 × 1.0000 A / 1.0000 V
- Move the cursor to the value in column Scale and press Enter.

A dialog window showing the scale formula is displayed.

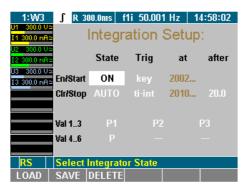
- Select a value for each parameter and confirm with *Enter*. The settings are shown in column *Scale*.
- Save the settings with *SAVE* in the desired configuration.

7.8 Integration function configuration

This configuration concern important parameters required for the calculation of integrated values over time.

Note

You can select up to six different integration parameter (values) out of a list. Active power P1 to P3 and the sum power are preselected.


Call up Integration Setup

- \boxdot Analyzer is switched on; start screen is displayed.
 - Press function key *WAV*. The integration symbol is displayed in the assignment bar for function keys.

1:W3 J R 300.	0ms f1i 50.003 Hz	14:58:30	
11 300.0 mR: ∫ P1	10.549	m₩h	
12 300.0 HILL	10.338	mWh	
13 300.0 va	10.368	mWh	
∫ р	31.255	mWh	
RS Integratio	n (total)		
∫ Start ∫	Clear el/mech 🧊		

Press the function key \int . Integration symbol is displayed in the menu bar. Move Cursor to \int display and press *Enter*.

The Integration Setup menu is displayed.

In the Integration Setup menu, define the following settings:

Line	Function
En/Start	Enable integration function/ set start conditions
Clr/Stop	Configure data reset / set stop conditions
Val 13	Select first three values
Val 46	Select next three values

☑ Menu Integration Setup is displayed on the screen

Select integration value

Select with the cursor in line Val 1..3 or Val 4..6 a value and confirm with Enter.
 A dialog window showing the selectable values is displayed.

Move the Cursor in the window to the wanted value and confirm with Enter.

The parameter is now shown on the display

- Configure the other values accordingly
- Save the settings with *SAVE* in the desired configuration.

Configure status

In this menu you can enable / disable the integration function. Also the way of clearing the values can be configured. This is done in the *Integration Setup* menu at column *State*.

Line	Settings	Description
En	ON	Integration function active
	OFF	Integration function inactive
Clr	MAN	Clear manual
	AUTO	Auto clear at start

Menu Integration Setup, first field column State is highlighted

- Press Enter, select ON and confirm with Enter. The integrations function is now enabled . If you want to disable it, select OFF and confirm with Enter
- Save the settings with SAVE in the desired configuration.

	NONE	
	l1m	
	U1m	
ſ	P1	
	Q1	
	S1	
	P1H01	
	Q1H01 +	

Note

The integration function is enabled (ON) in the factory configuration 1:W3.

- Menu Integration Setup, second field column State is highlighted
- Press Enter, select AUTO and confirm with Enter. Clear values at start is now enabled. If you want to change it, select MAN and confirm with Enter
- Save the settings with SAVE in the desired configuration.

Note

In the factory configuration *1:W3* the function clear manual (*MAN*) is preselected.

Configure start	Config	ure	start	
-----------------	--------	-----	-------	--

You can select different start conditions:

	Column	Settings	description	
Γ	Trig	remote	Start via Interface command	
		time	Start on date and time	
		key	Start when key pressed (Key F1)	
	at	-Date-	Start time(only active at <i>Trig time</i>)	
	after	-	No function	

- Menu Integration Setup, first field column Trig is highlighted
- Press Enter, select start condition and confirm with Enter. Start condition is now set. If you have selected a time to start (*time*) enter the time in the column at. Proceed as described below:
- ☑ Menu Integration Setup, first field column at is highlighted
- Press Enter, select year, month, day, hour minute and seconds with the cursors and confirm with Enter. Start time is now set.
- Save the settings with SAVE in the desired configuration.

Note

Date and time for start is taken from the clock in the unit. Please control date and time of the unit before you start the integration calculation (7.5"Adjust date and time" page 29).

Configure stop

You can select different stop conditions:

Column	Settings	Description	
Trig	remote	Stop via Interface command	
_	time	Stop at date and time	
	key	Stop when key pressed (Key <i>F2</i>)	
	ti-int	Stop after time window	
at	-Date-	Stop on date and time (only	
		active at <i>Trig time</i>)	
after	-time-	Integrations time window in sec.	
		((only active at Trig ti-int)	

- Menu Integration Setup, second field column Trig markiert
- Press Enter, select stop condition and confirm with Enter. Stop condition is now set. If you have selected a time to start (*time*) enter the time in the column at. Proceed as described below:
- Menu Integration Setup, first field column at is highlighted
- Press *Enter*, select year, month, day, hour minute and seconds with the cursors and confirm with *Enter*.
 Stop time is now set. If you have an integration time window selected (*ti-int*) proceed as follow:
- ☑ Menu *Integration Setup*, second field column *after* is highlighted
- Press Enter, select time with the cursors and confirm with Enter.

Stop time is now set.

Save the settings with *SAVE* in the desired configurationPress

7.9 Save configuration

- A configuration menu is displayed on the screen (for a list of configuration menus, refer to page 22).
- Press function key SAVE.
 A list showing all existing configurations is displayed.
- Select a configuration (e.g. 10:USER) and confirm with Enter. The configuration is now being saved with the new name. The name of the new configuration, e.g. 10:USER, is displayed in the menu item.

At the next startup of the device, the last saved and loaded configuration is applied by default.

7.10 Delete configuration

- A configuration menu is displayed on the screen (for a list of configuration menus, refer to page 22).
- Press function key DELETE.
 A list showing all existing configurations is displayed.
- Select a configuration (e.g. 10:USER) and confirm with Enter. The configuration is now being deleted.
- Press *Enter* or *Esc* to return to the previous screen.

7.11 Undersampling / Aliasing

If you want to make signal analyses like DSO (scope) or harmonic analyses (FFT) with a digital sampling procedures you need to take care about Shannon's sampling theorem which says: "The sample frequency must be minimum double than the highest signal frequency". If you do not keep this rule you will get results (frequencies or waveforms) that do not exist in truth (=Aliasing). If you want to measure a numeric time based mean values like rms, rectified mean, mean...you do not need to take care about Shannon's theorem. For the precision of the results only the number of samples is important, not the sampling frequency (average time >> cycle duration). But you have to consider that the sampling signal must be statistical independent, that means the sampling frequency must not be close or a multiple of the signal frequency.

Note

To work in the "undersampling mode" the anti-aliasing filter has to be turned *OFF* at the current and voltage channel (see chapter 7.6 "Configure current and voltage channels" page: 30).

8 Measuring process

The power analyzer is designed for the measuring of currents and voltages through up to three different channels. It calculates rms values, real, apparent and idle power and other derived values. The accuracy is thereby not affected by the wave form, frequency or phase shift. Harmonics are output to maximum half the sampling frequency.

You have the option to apply the default settings or a user-defined configuration. If you wish to use a user-defined configuration, you must first define and save the respective settings and then load the relevant configuration (see chapter 7: "Configuration", page 22).

The power analyzer begins to measure as soon as the measuring arrangement is set up and the device is switched on.

8.1 Prior to measuring

☑ Connect power analyzer to the mains socket.

- Check the measuring connections at the power analyzer.
- Switch on the power analyzer.

Measuring with default configuration

Measuring with user-defined

configuration

If you want to complete an analysis using the default configuration, no additional steps are required.

Ensure that the factory configuration is loaded (see chapter 7.2: "Load configuration", page 23).

If you want to complete an analysis using a user-defined configuration, load the respective configuration see chapter 7 "Configuration", page 22).

Ω

Important

If you want to measure with external shunt or probe please make sure that there is no signal connected at the direct current inputs. Signals on both inputs (external- and direct current input) can damage the measurement unit.

8.2 Measure voltage, current and power

8.2.1 View the measured values for the individual channels

View the values of one channel

View detailed

values of one

channel

After switching on the power analyzer, the display shows the numerical values measured in channel 1.

1:W3	PI R 600.0ms	f1u Hz	10:30:08
01 300.0 m0± 11 30.00 mR±		0.00	mV
U2 300.0 MU≏ 12 30.00 mR≐	1 rms ±	0.000	mA
U3 300.0 mU≄ 13 30.00 mR≐	P ₁ ±	0.0000	m₩
	S ₁ ±	0.000	mVA
	Q1 <u>+</u>	0.000	mVar
	λ ₁		
RS	Phase 1, Mai	n	
LCD +	LCD -	el/mech Deta	il rms/h01

Display	Description
U _{1 rms}	rms voltage value
I _{1 rms}	rms current value
P ₁	Real power
S ₁	Apparent power
Q ₁	Idle power
λ ₁	Power factor lambda (cap. or ind.)

Press measuring keys 1...n to view the values of the respective channels.

You have the option to view detailed data regarding the measured values of a channel.

- Press measuring keys 1...n to view the measured values of the respective channel.
- Press function key *Detail.* Details regarding the voltage values, e.g. for channel 2, are shown.

1:W3	PI R 309.9r	ns f1u 22.585 Hz	12:28:05
01 100.0 0≃ I1 300.0 mR≃	U _{2 m}	21.96	V
U2 - 100.0 V≌ 12 300.0 mR≃	U _{2 m}	-0.06	V
U3 - 100.0 V≃ 13 300.0 mR≃	U _{2 cf}	3.938	
	U _{2 ff}	1.4379	
	U2	124.3	V
	U _{2 0} -	-88.0	v
RS		oltage detail	
LCD +	LCD -	el/mech Deta	il rms/h01

Display	Description	
U _{2 rm}	Rectified mean value	
<i>U</i> _{2 m}	Mean value	
U _{2 cf}	Crest factor	
$U_{2 \rm ff}$	Form factor	
<i>U</i> _{2 p+}	Positive peak value	
U _{2 p-}	Negative peak value	

Press function key *Detail* again.

Details regarding the current values are displayed. The equivalent parameters to those shown above for voltage are displayed.

Press function key *Detail* again.

Details regarding the power values, e.g. for channel 2, are shown.

1:W3	PI R 309.9ms	f1u 22.586 Hz	12:29:10
U1 100.0 U≃ I1 300.0 mA≃	P ₂	1.139	W
U2 100.0 U≃ 12 300.0 nA≃	P ₂	0.851	W
U3 100.0 V≃ I3 300.0 mR≃	Z ₂	196.03	Ω
	Ψ ₂	77.15	0
RS	Phase 2, Pow		
LCD +	LCD -	el/mech Deta	il rms/h01

	Display	Description
P ₂ Power		Power
Pc2 Corrected power		Corrected power
Z ₂ Apparent impedance		Apparent impedance
φ_2 Angle between U2 and I2		Angle between U2 and I2

Press function key *Detail* again.
 Details regarding the measured values for phase-to-phase

voltage are displayed.

• To return to the measured values for channel 2, press function key *Detail* again.

8.2.2 View totals of all measured values

View totals

Press measuring key <u></u>

The totals of the measured values of the first three channels are displayed (channel 1-3).

1:W3	PI R 4	00.2ms	f1u 14.994 Hz	09:58:41
U1 1.000 kU≃ I1 10.00 A≃	U,	ms ±	0.2146	kV
U2 1.000 kU≃ I2 10.00 A≃	Ι,	ms 🛨	3.454	А
U3 1.000 kV≃ I3 10.00 A≃	Р	±	1.7691	kW
U4 1.000 kV≃ I4 10.00 A≃	s	±	2.226	kVA
U5 1.000 kV≃ I5 10.00 A≃	Q	±	1.351	kVar
U6 1.000 kV≃ I6 10.00 A≃	λ	±	0.7946	ind
RS	Totals	(1/2/3),	Y	
LCD +	LCD -		el/mech ㅅ /	△ rms/h01

▶ Press measuring key ∑. again

The totals of the measured values of the second three channels are displayed (P channel 4-6).

are displayed (i channel ± 0).				
1:W3	PI	400.3ms	f1u 14.989 Hz	10:03:18
U1 1.000 kV≃ I1 10.00 A≃	U′	_{∧rms} ±	0.2411	kV
U2 1.000 kV≃ I2 10.00 A≃		rms 🛨	3.926	А
U3 1.000 kV≃ I3 10.00 A≃	P'	<u>+</u>	2.2543	kW
U4 1.000 kV≃ I4 10.00 A≃	S	<u>+</u>	2.841	kVA
	Q	<u>+</u>	1.729	kVar
U6 1.000 kU≃ I6 10.00 A≃	λ	<u>+</u>	0.7934	ind
RS	Tota	als (4/5/6),	, 人	
LCD +	LCD) - [el/mech 人 /	△ rms/h01

View efficiency

• Press measuring key Σ three times (or again)

The efficiency and the total active power are displayed.

1:W3	PI	400.0ms	f1u 15.001 Hz	10:04:09
U1 1.000 kV 11 10.00 A		±	124.81	%
U2 1.000 kV I2 10.00 A	×	±	80.12	%
U3 1.000 kV I3 10.00 A				
U4 1.000 kV I4 10.00 A		ŧ	1.7937	kW
U5 1.000 kV I5 10.00 A	- 1	±	2.2387	kW
U6 1.000 kV I6 10.00 A				
RS	Effici	ency (1/2	2/3 & 4/5/6)	
LCD +	LCD		el/mech	rms/h01

Note

The efficiency screen and totals channels 4-6 screen only appear if there are 4 to 6 power phases equipped

8.2.3 Compare measured values

Compare measured values

You have the option to compare the values measured at the different channels, e.g. all voltages measured at all channels. When pressing measuring key WAV, the comparative display switches from voltage to current and power, showing the respective values of all three channels.

Press measuring key WAV.

The measured voltages and phase-to-phase voltages are displayed.

1:W3 PI R 309.8ms	f1u 22.593 Hz	12:31:21
01 100.0 0≏ 11 300.0 mR≏ U 1 rms	32.10	V
⁰² 100.0 U≊ 12 300.0 m8≃ U2 rms	31.65	V
^{U3} 100.0 V≃ 13 300.0 mB≃ U _{3 rms}	31.71	V
U _{12 rms}	48.50	V
U 23 rms	48.36	V
U _{31 rms}	48.46	V
RS Voltage, Pha	se 1/2/3	
LCD + LCD -	el/mech ʃ	rms/h01

Display	Description
$U_{1 \text{ rms}} \dots U_{3 \text{ rms}}$	rms voltage at channels 1 to 3
$\begin{array}{c} U_{12 \text{ rms}} \\ U_{31 \text{ rms}} \end{array}$	Phase-to-phase voltage at channels 1/2, 2/3 and 3/1

- Press key WAV again. The measured current values *I1* to *I3* for the three channels are displayed.
- Press key WAV again.

The power and power factor values are displayed.

1:W3	PI	309.9ms 11u 22.585 Hz	12:32:20
01 - 100.0 0≃ I1 300.0 nA≃	P ₁	1.164	W
U2 100.0 U≃ 12 300.0 nA≃	P_2	1.127	W
U3 100.0 V≃ I3 300.0 nA≃	P ₃	1.134	W
	λ_1	0.2249	ind
	λ_2	0.2221	ind
	λ_3	0.2219	ind
RS	Powe	er, Phase 1/2/3	
LCD +	LCD	- el/mech ∫	rms/h01
	1		

	Display	Description	
	<i>P</i> ₁ <i>P</i> ₃	P ₃ Power at channels 1 to 3	
$\lambda_1 \dots \lambda_3$ Power factors at channels 1 to 3			

To select channels 4 to 6, repeatedly press key WAV.

8.2.4 View fundamentals View For each measured value, the power analyzer calculates the **fundamentals** fundamental by means of Fourier transformation (DFT). Press measuring keys Σ or 1...n and WAV to call up the desired values, e.g. power at channels 1 to 3. Press function key rms/h01. The power of the fundamentals is displayed. 1:W3 PI 314.0ms f1u 50.956 Hz 13:11:24 P 1 H01 1.607 W I1 300.0 mR≃ W 1.584 P_{2 H01} ann u 🗠 1.597 W P3 H01 00.0 mR≏ 0.3074 ind λ_{1 H01} 0.3036 ind λ_{2 H01} 0.3048 ind λ_{3 H01}

To return to the power values, press function key rms/h01 again.

rms/h01

View details of
fundamentalsYou have the option to view detailed data regarding a
fundamental, such as voltage, current, power and phase-to-phase
voltage.

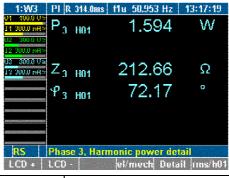
Harmonic power, Phase 1/2/3

el/mech

LCD -

- ▶ Press measuring keys ∑ or 1...n and WAV to call up the desired values, e.g. values measured at channels 3.
- Press function key *rms/h01*. Detailed measured values in connection with the fundamentals at channel 3 are shown.

1:W3	PI	314.0ms	f1u 50.956 Hz	13:15:40
U1 100.0 V≃ I1 300.0 mR≃	U_3	H01	33.20	V
U2 300.0 U≃ 12 300.0 mR≃	13	H01	156.34	mΑ
U3 - 300.0 V≃ 13 300.0 MR≃	Ρ3	H01	1.590	W
	S_3	H01	5.19	VA
	Q_3	H01	4.94	Var
	λ3	H01	0.3063	ind
RS	Phas	e 3, Harr	nonic main	
LCD +	LCD		el/mech Deta	il rms/h01


- Press function key *Detail*.
 - Details of the voltage of the fundamental at channel 3 are shown.

1:W3	PI	314.0ms	f1u 50.958 Hz	13:15:56
01 - 100.0 0≃ I1 300.0 mR≃	U_3	H01	33.27	V
02 300.0 0≏ 12 300.0 mR≃	U_3	thd	127.60	%
U3 – 300.0 V≃ 13–300.0 mR≃	U_3	hc	78.71	%
	U_3	fe	61.68	%
RS	1001400000000	e 3, Harr	nonic voltage de	TABLETIN DESCRIPTION OF TABLETING
LCD +	LCD ·		el/mech Deta	il (rms/h01

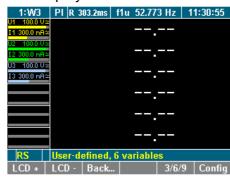
Display Description	
U _{2 H01} rms value of fundamental	
$U_{2 \text{ thd}}$ Total harmonic distortion (according to IEC)	
U _{2 hc} Harmonic content (according to DIN)	
U _{2 fc}	Fundamental content

Press function key *Detail* twice.

Details of the power of the fundamental at channel 3 are shown.

Display	Description
P _{2 H01} Power of fundamental	
Z _{2 H01}	Apparent impedance of fundamental
$\varphi_{2 H01}$ Angle between U3 and I3 of fundamental	

- To return to the display of the fundamentals for channel 3, press function key Detail twice.
- To return to the measured values for channel 3, press function key *rms/h01* again.


8.2.5 User defined screen view

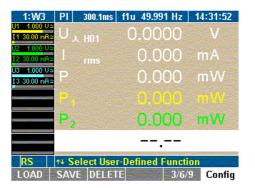
Press function key User

In this menu you can configure your own defined numeric screen. Furthermore you can change this user defined screen to get 3, 6 or even 9 values displayed on one screen.

View user defined screen

The display shows the user defined screen.

Note


If you enter the user defined screen the first time it is empty, showing dashes. In all other cases it shows the last saved configuration or the recently selected values. Select numeric Values

You can select values out of list of more than 450 variables depending with how many channels the unit has equipped.

Press function key Config

The configuration menu is shown.

- Select desired row with the Cursor and confirm with *Enter*. A dialog window showing the selectable values is displayed
- Select desired values with the cursor (up/down and left/right) and confirm with Enter.
 - The selected values are shown on the display. Repeat until all desired values are on the display screen
- Press *Esc* to leave the configuration menu

Note

You can configure and display up to nine variables (values). Please change the user defined display size (see "Change user defined display size" below) to configure all nine values.

Change user defined display size

You can change the size of the numeric display in the user defined screen. You can select between three sizes:

size	description
3	3 numeric values, double size
6	6 numeric values, common size (7mm)
9	9 numeric values, with size 5mm

Press function key 3/6/9

User defined values are shown in desired size .

1:W3	PI R 3	03.2ms	f1u 52.776	Hz 1	4:34:44
U1 100.0 V≃ I1 300.0 mA≃	U,	H01	34.	.52	V
U2 100.0 V≃		rms	158.	.59 m	ıΑ
<u>12 300.0 m</u> A≃	Р	iiiio	5.9	90	W
U3 100.0 V≃ I3 300.0 mA≃	P 1		1.9	68	W
13 300.0 MH-2	P 2		1.9	86	W
	P 3			36	W
		rms		.11 m	
	₂	rms		.61 m	
	I 3	rms	159.	.06 m	ıA
RS	User-d	efined,	9 variables	\$	
LCD +	LCD -	Back		3/6/9	Config

Note

The changing of the display size is done in a loop, every time you press the function key 3/6/9.

You can change the size in the configuration menu and also in the measurement menu.

Save user defined screen

Save the settings with SAVE in the desired configuration

See details about saving a configuration in chapter 7.9 Save configuration

Back to common numeric screen

Press function keys Back... or Esc

creen The recently used numeric screen is shown.

8.3 Change view mode

After having selected a channel and the relevant measured values, you have the option to change to different view modes where the parameters are shown in the form of numerical values, vector graphs or oscilloscope graphs.

8.3.1 Numerical display

For details regarding the numerical display of measured values, refer to chapter 8.2 "Measure voltage, current and power", page 40

8.3.2 Vector graphs

Up to 6 signals of the H01 fundamentals can be viewed as vector graphs.

The vector graphs show voltage and current with amplitude and phase shift, and allow fro the fast assessment of signals and detection of errors in the connections.

View vector graphs

- ▶ Press measuring keys ∑ or 1...n and WAV to call up the desired values, e.g. values measured at WAV power.
- Press measuring key Vector graphs.

The measured values are shown in the form of vector graphs.

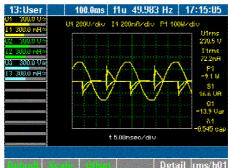
Display	Description
φ1φ3	Phase angle between U and I
<i>φ</i> U1	reference point (always = 0)
φU2	Angle between U2 and U1
φU3	Angle between U3 and U1
scale	Range (reference value for the diameter of the outer circle)

▶ To view a different channel or different measured values in vector graph form, press measuring keys ∑ or 1...n and WAV.

Adjust scale The scale of the vector in the vector diagram can de zoomed.

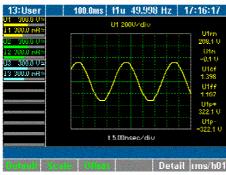
To automatically optimise the scale of the graph, press function key *Default*.

The scale is set to the measurement range.


- To change the scale of the axes, press function key *Scale U* or *Scale I*.
- Adjust the scale, using the cursor keys up / down press Enter to confirm or Esc to exit. I.

8.3.3 Oscilloscope curves

The digital oscilloscope function (DSO) allows for display of signals in curves, so that signal distortions can be quickly detected.


View oscilloscope display

- ▶ Press measuring keys ∑ or 1...n and WAV to call up the desired values, e.g. values measured at channels 1.
 - Press measuring key *Oscilloscope curves*. The measured values are shown in the form of oscilloscope curves.

• To view the details regarding a measured value, press function key *Detail*.

The display shows the measured voltage.

- To view a different measure parameter, press function key *Detail* again.
- To return to an overview of all measured values for channel 1 in oscilloscope format, press function key *Detail* again.
- ▶ To view a different channel or different measured values in oscilloscope graph form, press measuring keys ∑ or 1...n and WAV.

Adjust axial scale The oscilloscope display can be optimised in a number of ways.

- To automatically optimise the scale of the graph, press function key *Default*.
 - The scale is set to steps of 5 ms.
- To change the scale of the axes, press function key *Scale*. Adjust the scale, using the cursor keys as described below:

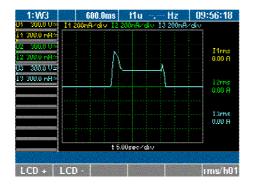
Cursor key Function			
left, right	Adjust scale of time axis		
up, down	Adjust scale of amplitude axis		
Enter	Confirm settings		
Esc	Exit scale mode		

Adjust the scale of the axes, using the cursor keys, and press *Enter* and *Esc*.

The oscilloscope display with the adjusted axes is shown.

Adjust zero Press function key Offset.

Adjust the zero point by using the cursor keys and confirm with *Enter*.


The oscilloscope display with the adjusted zero point is shown.

8.3.4 Recorder view

The recorder allows you to monitor measured values, by recording the mean measured values over time. This function is particularly useful for the detection of trends and amplitude variations. The actual graph depends on the configured range and average time (see chapter 7.1 "Call up General Setup", page 23). Prominent variations in the graph indicate errors in the measuring system.

View recorder
 Press measuring keys ∑ or 1...n and WAV to call up the desired values, e.g. current measured at channels 1 to 3.
 Press measuring key *Recorder*.

The display shows a recording of the measured values.

b drücken Sie nochmals die Funktionstaste rms/h01.

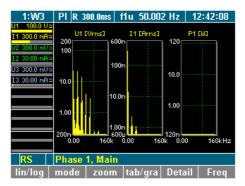
8.4 Fast Fourier analysis

Fast Fourier transformation (FFT) allows for the analysis of the individual frequency components of a signal. The harmonics may be viewed in graphical or tabluar format as percentages of fundamental H01.

- Press measuring keys 1...n to call up the desired values, e.g. values measured at channels 1.
- Press measuring key Fast Fourier analysis.
 - The frequency analysis is shown.

1:W3	PI R 3	14.0ms	f1u	50.95	B Hz	15:40:22	
U1 100.0 V≃	14.1	[Urms]		[Arms]		P1 [W]	
I1 300.0 mA≃	200		00mr	LHIMSJ	i 120∟	PTLWJ	
U2 300.0 V≃	180		50m		110		
I2 300.0 mA≃	160		00m 50m		100 - 90.0 -		
U3 300.0 V≃	140		00m		80.0		
I3 300.0 mA≃	120		50m 00m		70.0		
	80.0		50m		50.0		
	60.0		00m 50m		40.0		
	40.0	10	00m		20.0		
	20.0		1.0m		10.0		
	0.00	160k	0.00	160		0 160kH	z
RS	Phase	1, Mair)				
lin/log	mode	zoom	tal	o/gra	Deta	il 🕴 Freq	

The following function keys are available:


Function key	Description
lin/log	Switch between linear and logarithmic Y axis
mode	View harmonics
zoom	Shift X axis
tab/gra	Switch between table and graphic display
Detail	Switch between U, I and P of one phase; switch between displays of 1 or 3 values
Freq	Select frequency range

8.4.1 FFT mode

Adjust scale You have the option choose between a linear or logarithmic Y-axis. By using the cursor keys, you can adjust the positions of the axes.

Press function key *lin/log*.

The scale of the graph changes from linear to logarithmic or vice versa (here: change to logarithmic).

• To change the scale of the axes, press function key *Zoom*.

Adjust the scale, using the cursor keys:

Cursor key	Function
left, right	Shift frequency axis
up, down	Change frequency
Enter	Confirm settings
Esc	Exit scale mode

Adjust the scale of the axes, using the cursor keys, and press *Enter* and *Esc*.

The details of measured value U1 (voltage) are displayed.

The graph with the adjusted axes is shown.

View details of a measured value

Press function key Detail.

 1:W/3
 PI
 R 314.0ms
 f1u
 50.957 Hz
 15:42:08

 U1
 1000 U2
 U1 CUmsJ
 U1 CUmsJ
 U1 CUmsJ

 U2
 3000 U2
 100
 100
 100
 100

 U3
 3000 U2
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100

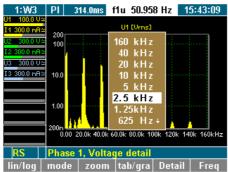
Press function key *Detail* again.
 The details of measured value I1 (current) are displayed.

Press function key Detail again. The details of measured value P1 (power) are displayed.

▶ To return to the overview of measured values of the selected channel, press function key *Detail* again.

Set frequency range

The default frequency range is set to maximum half of the sampling frequency.



Important

For signals with a lower frequency (e.g. 10 Hz), the frequency range must be adjusted, as measurements would otherwise be inaccurate.

Press function key Freq.

A list of possible values is displayed.

Select a value, using the cursor keys, and press *Enter*. The frequency analysis is carried out up to the selected value, and the result is displayed.

Change view
modeYou have the option to view individual measured values or a group
of up to three values (e.g. all measured values of channel 1) in
graphic or table format. By default, the measured values are
shown in graphic format.

Press function key *tab/gra*.

The raw data is now shown in a table (here: voltage on channel 1).

1:W3	PI	314.0	ms f1	ı 50.95	15:44:10				
U1 100.0 V≏									
I1 300.0 mA≏	FFT	Freq		U1 EU	/rms]				
U2 300.0 U≏	0.0	00 Hz		0.	0				
I2 300.0 mA≏	10.4	42 Hz		0.	2				
		83 Hz		0.	6				
U3300.0 V≏	31.	25 Hz		15	i.9				
<u>I3 300.0</u> mA≏	41.	67 Hz	31.6						
	52.	08 Hz	33.6						
	62.	50 Hz	29.6						
	72.	92 Hz	11.5						
	83.	33 Hz	0.4						
	93.	75 Hz	0.2						
	104	1.2 Hz	0.2						
RS	Phas	Phase 1, Voltage detail							
	mod	e sc	roll t	ab/gra	Detai	il Freq			

8.4.2 Harmonic Order mode

View harmonics

Press function key *mode* to call up a table showing the harmonics.

1:W3	PI	299.	8ms i	f1u 50.02	29 Hz	15:53:45		
<u>U1 300.0</u> V≃								
I1 1.000 A≃	0	Order		I1 E	Arms]			
U2 300.0 mU≃		0		0.	000			
		1		0.	107			
12 30.00 mA≃		2						
U3 300.0 mV≃		3		0.	101			
I3 30.00 mA≃		4						
		5	0.089					
		6	0.001					
		7	0.072					
		8						
		9	0.054					
		10	,					
		f(1)	50.06 Hz					
RS*+	Phase 1, Current detail							
	moc	le s	croll	tab/gra	Deta	il Freq		

The table shows the integer harmonics (here: voltages of the individual harmonics on channel 1).

Display	Description
Order 0	DC content
Order 1	Fundamental
Order 2	2 x fundamental frequency
Order 3	3 x fundamental frequency
Order	n x fundamental frequency

Press function key scroll to enable scrolling and paging through the table.

To scroll and page, use the cursor keys:

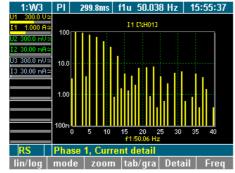
Cursor key	Function
left, right	Page through table (screen by screen)
up, down	Scroll through table (line by line)
Enter	Confirm view and exit scale mode
Esc	Exit scale mode

When you have reached the table section you wish to study in more detail, press *Enter* or *Esc*.

The selected table section is now displayed.

To change to a graphic display of the harmonics, press function key tab/gra.

View spectrum relative to H01


Note

fundamental H01.

This view is important for the analysis of the input signal.

8.4.3 Harmonic Order mode related to fundamental in % The harmonic spectrum can be viewed in percentages of

Press function key mode.

To change to the table view of the spectrum, press function key tab/gra.

,									
1:W3	PI	R 299.	8ms	f1u	50.02	8 Hz	1	5:56:51	
U1 300.0 V≃									
I1 1.000 A≃	0	Order		U1 C%H013		I1 C%H013		C%H013	
U2 300.0 mU≃		0	0.1		0.	5		0.0	
12 30.00 mA≃		1	10	0.0	10	0.0	1	00.0	
		2			1.	2		0.0	
U3 300.0 mV≃		3	1	.2	94	94.7		-0.3	
I3 30.00 mA≃	4		,			,			
		5		1.1		83.0		0.7	
		6		,		1.2		,	
		7		1.3		.8		-0.7	
		8	,						
		9	1.0		50.6		-0.1		
		10			3.	0			
	f(1)		50.0	14 Hz	50.0	50.07 Hz		50.05 Hz	
RS	Phase 1, Main								
	mode scrol			l tab/gra Deta			ail Freg		

8.5 Integration function / electrical work

For the calculation of integrated values the values are measured over time. You can configure up to six independent values (Um, Im, S, P, Q) for the calculation.

Press measuring key WAV.

A key for the calculation of the electrical work is shown in the assignment bar for function keys.

0				
1:W3	PI	309.9ms	f1u 22.585 Hz	12:32:20
U1 100.0 V≃ I1 300.0 nA≃	P ₁		1.164	W
U2 100.0 U≃ 12 300.0 nA≃	P_2		1.127	W
U3 100.0 V≃ I3 300.0 nR≃	P_3		1.134	W
	λ_1		0.2249	ind
	λ_2		0.2221	ind
	λ_3		0.2219	ind
RS	Powe	r, Pha	se 1/2/3	
LCD +	LCD -		el/mech ∫	rms/h01

▶ Press function key ∫.

The assignment bar shows the functions used for the calculation.

1:W3 ∫ ∫ 300.0n	ns f1u 50.002 Hz	10:28:38
U1 100.0 V≃ I1 300.0 mR≃ ∫ P	541.50	mWh
U2 300.0 V≃ I2 300.0 mR≏ ∫ Q	2.3403	Vrh
U3 300.0 V≃ I3 300.0 mA≃ ∫ S	2.4021	VAh
∫ 11 m	-181.09	μAh
∫ 12 m	2.8190	μAh
∫ из m	-1.8149	mVh
RS Integration	(total)	
∫ Start ∫ Stop ∫ C	lear el/mech 🛛 ∫	

Function key	Function	
∫ Start	Start measurement (integration)	
∫ Stop	Stop measurement (integration)	
∫ Clear	Reset measurement (integration) to zero	
ſ	Change to display of measured values	

- ▶ Press function key ∫ Start to start the measuring process.
- Press function key J Stop to stop the measuring process. The totals of the reference power are shown.

1:W3	∫ ∫ 300.0ms	f1u 50.002 Hz	10:29:08
U1 100.0 V≃ I1 300.0 mA≃	Ĵ+ P	587.60	mWh
U2 300.0 V≃ 12 300.0 mA≃	∫+ q	2.5449	Vrh
U3 300.0 V≃ I3 300.0 mA≃	Ĵ+ s	2.6119	VAh
	∫+ I1 m	0.0000	Ah
	∫+ 12 m	17.890	μAh
	∫+ U3 m	137.85	μVh
RS	Integration (p	os only)	
∫Start	∫ Stop ∫ Clea	ar el/mech	

- Press function key \int .
 - The totals of the output power are shown.

1:W3	ll	300.0ms	f1u 50.001	Hz	10:29:23
U1 _ 100.0 V≃ I1 300.0 mA≃	<u>∫-</u> р		0.000)()	VVh
U2 300.0 V≃ I2 300.0 mA≃	∫- q		0.000)()	Vrh
U3 300.0 V≃ I3 300.0 mA≃	∫-s		0.000)()	VAh
	J- 11	m	-203.3	86	μAh
	∫- 12	m	-15.11	7	μAh
	J- ua	łm	-2.429	96	mVh
RS	Integ	ration (n	eg only)		
∫ Start	∫ Stoj	າ ∫ Clea	ar el/mech	ſ	

► To return to the overview of measured values for the selected channel, press function key J again.

8.6 Save and print measurements

8.6.1 Save measurements

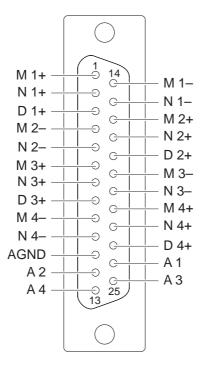
You have the option to save the sampling values or measurements for later offline analyses, e.g. FFT, average startup currents or transient processes.

Note

Measuring key *Storage* works only in conjunction with PowerView Storage or NormaX software.

For more details, please refer to the user manuals of the respective software product.

8.6.2 Print measurements


- \square Check whether a printer is connected.
- ☑ Ensure that the interface is properly configured (see chapter 7.3: "Configure data transfer to printer and PC", page 23.)
- Press measuring key *Print*.
 The measured values are printed.

9 PI1 Process Interface (optional)

The PI1 interface allows you to simultaneously analyse the electrical and mechanical power of up to 4 motors (generators). The torque and rotational speed are thereby measured as analog signals or via frequency inputs.

9.1 Pin assignment

The PI1 is located on the rear panel of the power analyzer (see chapter 3 "Design and functions", page 7).

Pin	Assignment
M1+M4+ M1M4-	4 inputs for torque; configurable for analog or digital signals
N1+N4+ N1N4-	4 inputs for rotational speed; configurable for analog or digital signals
D1+D4+	4 inputs for sense of rotation; only for motor analyses with digital speed inputs; corresponding inputs, e.g. N1/D1 share a LO port
AGND	Input of analog ground
A1A4	4 analog outputs

9.2 Measured values

TorqueThe torque is measured by means of a force transducer or torque
measuring shaft with a ± 10V DC output or a frequency output.

Rotational speed The speed is measured by means of an incremental encoder with TTI or AC output; alternatively, an analog signal, e.g. from a speedometer might be used.

Sense of The sense of direction is detected by means of a permanent signal (L = sense of direction positive, H = sense of direction negative); alternatively, it might be determined using an incremental encoder. In this case, the following applies: if the signal is leading, the sense of direction is positive; if the signal is lagging, the sense of direction is negative.

9.3 Configuring PI1

Prior to starting the measuring process, the torque sensor and the speed sensor must be configured. To configure the process interface, select menu *Motor / Generator Setup*. The configuration procedure consists of the following steps:

- Call up Motor / Generator Setup
- Select motor
- Configure torque sensor
- Configure speed sensor
- Configure other motors
- Configure analog outputs

Call up Motor / Generator Setup

☑ The device must be equipped with a PI1 process interface.

☑ Menu item *PI* must be shown in the menu bar

If the analyzer is equipped with a process interface, menu item PI is shown automatically in the menu.

Move the cursor to menu item *PI* and press *Enter*. Menu *Motor / Generator Setup* is displayed, showing the settings for motor 1 (*M1*).

Adjust the settings as follows:

Line	Description
M1	Configure torque measurement (input, slope and zero) for each motor
n1	Configure speed measurement (speed sensor)
Drv1	Set type (<i>Type</i>), pole pairs (<i>PPairs</i>) and reference power (<i>Pref</i>)

- If you have already saved a configuration that suits the measuring layout: press function key LOAD, select this configuration and confirm with Enter.
- Adjust configuration as described below.

Select motor
 To configure the system for motor 1, go to "Configure torque sensor"

 or –
 To configure another motor, press *Next* ... until the respective motor code (*M2*, *M3* or *M4*) is displayed.

Configure torque sensor The torque can be measured by means of force transducers or a torque-measuring shaft. The signal is transferred via a ± 10V AC output or a frequency output. In line *M.*. (e.g. for motor 1: *M1*), adjust the following settings:

Column	Settings	Description
Gain	1	Slope
Unit	Nm/Hz	Depending on force
	Nm/V	transducer or sensing shaft
		type
Zero	1	Voltage or frequency
		corresponding to speed = 0
Unit	Hz, V	Unit for zero, depending on
		sensor type

- Move the cursor to a field in line *M1* and press *Enter*. A list of possible options is displayed.
- Select a value and confirm with Enter.

The value is now shown in the display field.

Configure speed sensor

Possible speed sensors are: Incremental encoder (measuring with TTL / AC output) or an analog signal. In line n.. (e.g. for motor 1: n1), adjust the settings as follows:

Column	Settings	Description	
Gain	1	Slope	
Unit	pul/r rpm/V	Pulses per revolution	
	rpm/V	Revolutions per volt	
Zero	1	Voltage or frequency	
		corresponding to speed = 0	
Unit	Hz, V	Unit for zero, depending on	
		sensor type	

- Move the cursor to a field in line *n1* and press *Enter*. A list of possible options is displayed.
- Select a value and confirm with *Enter*. The value is now shown in the display field.

Configure motor or generator

The analyzer can be used for the analysis of both motors and generators. To configure the device, adjust the settings in line *Drv1* (for motor 1):

Column	Settings	Description
Туре	MOT	Motor
	GEN	Generator
PPairs	1 999	Number of pole pairs
Pref	P P3	Reference power for
		efficiency calculation

	 Move the cursor to the field in line <i>Drv1</i> and press <i>Enter</i>. A list of possible options is displayed. Select a value and confirm with <i>Enter</i>. The value is now shown in the display field. Save the configuration for the motor by pressing <i>SAVE</i>.
Configure other	 Press function key <i>Next</i>
motors	The settings for motor 2 are displayed. Adjust settings for motors 2 to 4, following the above instructions for motor 1. Save the configurations for the motors by pressing <i>SAVE</i>.
Configure analog	The 4 analog outputs (A1A4) can be used to output the measured, calculated or averaged values or to transfer them to an external device for further processing. By default, the analog outputs are configured as voltage output for ± 10 V. In order to output higher voltages, you must enter the relevant transducer ratio, e.g. 10 mV/V for a measured voltage of 220 V and an output of 2.2 V.
output	Press function key <i>A-Out</i> .

The Analog Output Setup menu is displayed.

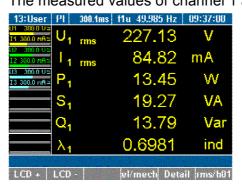
13:User	Pł	R 300.1ms	f1u 49.982 Hz	09:36:09
U1 300.0 U≃ I1 300.0 MA≃		Analog	Output S	etup:
U2 300.0 V≃ 12 300.0 mA≃		Ref	Gain []	Zero []
U3 300.0 V≃ I3 300.0 mR≃	A1	FIX	0.000 V fix	
	A2	FIX	0.000 V fix	
	A 3	FIX	0.000 V fix	
	Δ4	FIX	0.000 V fix	
	675			
statistical and a second second second		t Function		
LOAD	SA	VE DELET	E	Motor

Adjust the settings as follows:

Column	Settings	Description
Ref	FIX	Fixed DC voltage, or
	U1, M1, P _{M1}	selection from available
		average measured values
Gain	1	Transducer ratio or fixed
		value (-10.3 V to +10.3 V)
Column	Settings	Description
Unit	V/A, V/V, V/Ohm,	e.g. 10 mV/V, i.e. 10 mV at
	V/Hz (depending no	the output correspond to 1 V
	selected Ref)	of the measured value
Zero	1	Set zero/offset
Unit	A, W, V, Hz, Ohm	Unit for zero, depending on
		selected Ref

- Move the cursor to a field in line A1 and press Enter. A list of possible options is displayed.
- Select a value and confirm with *Enter*. The value is now shown in the display field.
- Configure analog outputs A2 to A4 accordingly.

9.4 Measuring with PI1


Torque, rotational speed and mechanical power are measured in real-time and averaged. They are combined with the measured electrical values so that slip and mechanical efficiency can be calculated.

☑ The device must be equipped with a PI1 process interface
 ☑ Menu item *PI* must be shown in the menu bar

If the analyzer is equipped with a process interface, menu item PI is shown automatically in the menu.

Press the measuring key for numerical display. The measured values of channel 1 are shown.

View measured electric values

Display	Description
U _{1 rms}	rms voltage value
I _{1 rms}	rms current value
<i>P</i> ₁	Real power
S ₁	Apparent power
Q ₁	Idle power
λ ₁	Power factor

- Press measuring keys 1...n to view the values of the respective channels.
- Press function key *el/mech*.

View mechanical values

The measured values of motor 1 are shown.

1:W3	PI	600.0ms	f1u Hz	16:17:11
U1 300.0 mV≃ I1 30.00 mA≃			-10.000	Nm
U2 300.0 mV≃ I2 30.00 mA≃	n ₁		0.0000	krpm
U3 300.0 mV≃ I3 30.00 mA≃	P _{M1}		0.0000	kW
	S_{L1}			%
	η_1			%
	Ρ	±	0.0000	mW
RS	Motor	1, Main		
LCD +	LCD -		el/mech Mot/	Gp

Press measuring keys 1...n to view the values of the respective inputs.

Display	Description	
<i>M</i> ₁	Torque of motor 1	
<i>n</i> ₁	Speed of motor 1	
P _{M1}	Mechanical power of motor 1	
S _{L1}	Slip of motor 1	
η_1	Efficiency of motor 1	
Р	Electrical reference power, depending on	
	configuration	

View raw values Raw values are unscaled values measured in a channel.

Press function key *Mot/Gp*.

The measured value of motor 1 is shown.

Press measuring keys 1...n to view the values of the respective inputs.

Display	Description
Gp1	Torque of motor 1
Gp2	Torque of motor 2
G p5	Speed of motor 1
G p6	Speed of motor 2

View all torques
Press measuring key WAV.
The torques of motors 1 to 4 are shown.

1:W3	PI	600.0ms	f1u	Hz 1	6:19:13
U1 300.0 mU≏ I1 30.00 mA≏			-0.00	50	Nm
U2 300.0 mU≏ I2 30.00 mR≏	M_2		-10.0	00	Nm
U3 300.0 mV≃ I3 30.00 mR≏			0.00	00	Nm
	M_4		-20.0	00	Nm
RS	Torqu	ie, Motor	1/2/3/4		
LCD +	LCD		el/mech	Mot/Gp	

Press key WAV again.

View all speeds The rotational speeds of motors 1 to 4 are shown.

1:W3	PI R 600.0ms	f1u Hz	16:21:07
U1 300.0 mU: I1 30.00 mA:	n ₁	0.0000	krpm
U2 300.0 mU: 12 30.00 mA:	n ₂	-0.6000	krpm
U3 300.0 mV: I3 30.00 mA:	1.00	0.0000	krpm
	n ₄	-120.00	krpm
RS	Speed, Motor	r 1/2/3/4	
LCD +	LCD -	el/mech Mot/(Gp

9.5 PI1 - technical data

9.5.1 8 inputs (analog/digital)

Each differential input can be configured individually as an analog or a digital input.

Input configured	Parameter	Voltage
as analog input	Range	±10 V nominal (saturation region
		approx. +2 %)
	Max. input voltage	±50 Vrms
	Max. common mode voltage to	±10 V (without additional error)
	ground	±25 V (without limitation by
		protective components)
	Uncertainty of measurement	±(0.1 % of AVG+ 0.08 % of AVGR)
Input configured	Parameter	Frequency
as digital input	Measuring signal	TTL-compatible or AC (switching
		threshold approx. +1.5 V \pm 0.5 V
		hysteresis)
	Range	0.5 Hz 500 kHz * ¹
	Max. input voltage	±50 Vrms
	Max. common mode voltage to	±25 V
	ground	
	Uncertainty of measurement	±0.025 % of AVG

9.5.2 4 digital inputs for the detection of the sense of rotation

Inputs for the detection of the sense of rotation are only used for motors and in conjunction with the corresponding digital speed inputs.

^{*&}lt;sup>1</sup> The number of pulses per revolution must be synchronised with the rotational speed of the motor in such a way that the maximum measuring frequency is not exceeded. On the other hand, ensure that the resolution is sufficient to measure the frequency at low motor speeds.

max. ± 10.3 V; max. load 5 mA,
short-circuit protected, shared LO
connection to ground potential
max. 50 Vrms at HI input
± (0.15 % of AVG + 0.05 % of FV),
final value FV = 10 V
< 0.2 x fault limit/K
corresponds to current average
time
approx. ± 8000 counts for ± 10 V, 1
count ≈ 1.25 mV
1090 %: approx. 10 ms
to ± 0.2 %: 25 ms
to ± 1.0 %: approx. 20 ms

9.5.3 4 outputs (analog)

10 Formulas

10.1 Direct current

Resistance: R = U/I $P = U \cdot I$ Power (P): 10.2 Alternating current Typical values for 230-V AC grid (50 Hz): U_p = 325 V Periodic time t = 0.02 seconds (= 0.707 * Up $U_m = \frac{1}{T} \int_{-\infty}^{T} u dt \quad \text{(pure AC sine = 0)}$ Arithmetic mean: $U_{rms} = \sqrt{\left(\frac{1}{T}\int_{0}^{T}u^{2}dt\right)}$ RMS value: $U_{rm} = \frac{1}{T} \int_{0}^{T} \frac{dt}{dt}$ Rectified mean value: $cf = \frac{U_p}{U_{max}}$ Crest factor: $ff = \frac{U_{rms}}{U_{rm}}$ Form factor: $U_{rmc} = (U_{rm} \cdot 1, 1107) = U_{rm} \cdot \frac{\pi}{2} \cdot \sqrt{2}$ Rectified mean value corrected $P = \frac{1}{T} \int_{0}^{T} (u \cdot i) dt$ Active power: $S = U \cdot I$ Apparent power: $Q = \sqrt{(S^2 - P^2)}$ (+...inductive, -...capacitive) Reactive power: $\lambda = \frac{P_{S}}{S} \rightarrow \cos \varphi \cdot g$ $\lambda_{H01} = (\cos \varphi) = \frac{P_{H01}}{S_{H01}}$ Power factor: $Z = \frac{S}{I_{rms}}^2$ Apparent impedance:

Active energy: $W = \int (u \cdot i) dt$

Voltage phase to phase:

$$U_{12rms} = \sqrt{\frac{1}{T} \int_{0}^{T} (U_{x(t)} - U_{y(t)})^{2} dt}$$

Power corrected:

$$P_{cx} = \frac{P}{0.5 + 0.5 \cdot (\frac{U_{rms}}{U_{rm} \cdot 1.1107})^2} \qquad x = 1...6$$

10.3 Fundamental and harmonics

Harmonic content (according to DIN):

$$U_{hc} = k = \frac{\sqrt{(U_{H2}^{2} + U_{H3}^{2} + \dots + U_{Hn}^{2})}}{\sqrt{(U_{H1}^{2} + U_{H2}^{2} + \dots + U_{Hn}^{2})}} = \frac{\sqrt{U_{rms}^{2} - U_{H01}^{2}}}{U_{rms}}$$

Harmonic distortion (according to IEC):

$$U_{thd} = \frac{\sqrt{(U_{H2}^{2} + U_{H3}^{2} + \dots + U_{Hn}^{2})}}{U_{H01}} = \frac{\sqrt{U_{rms}^{2} - U_{H01}^{2}}}{U_{H01}}$$

Fundamental content:

$$I_{fc} = \frac{I_{H01}}{I_{rms}} \implies k^2 + fc^2 = 1$$

10.4 Frequency analysis

Fourier transformation:

 $F(t) = \int_{0}^{1} [C(\omega) \cdot \cos(\omega t) + S(\omega) \cdot \sin(\omega t)] d\omega$ C(\omega) Amplitude of cosine wave

 $S(\omega)$ Amplitude of sine wave

The coherence with f(p) results in:

$$f(p) = \pi \times [C(\omega) - jS(\omega)]$$

amplitude spectrum: $F(\omega) = \sqrt{(C(\omega)^2 + S(\omega)^2)}$

phase angular:
$$\tan \varphi(\omega) = \frac{C(\omega)}{S(\omega)}$$

10.5 Uncertainty of measurement

Uncertainty of measurement - power:

$$M_{P} = \frac{2}{\sqrt{3}} \times \sqrt{M_{U}^{2} + M_{I}^{2} + M_{W}^{2}}$$

 $\begin{array}{lll} M_U & \text{Uncertainty of measurement - voltage} \\ M_I & \text{Uncertainty of measurement - current} \\ M_W & \text{Uncertainty of measurement - angle} \end{array}$

11 Transport and Storage

11.1 Transport

- Transport the device only in its original packaging.
- Keep the operating manual supplied with the device for future reference.
- Protect the device during transport against heat and moisture; do not exceed temperature range of -20 °C to + 50 °C and max. humidity of 85%.
- Protect the device against impacts and loads.

11.2 Storage

- Keep original packaging, as it might be required at a later stage for transport purposes or to return the device for repairs. Only the original packaging guarantees proper protection against mechanical impacts.
- Store the device in a dry room; the temperature range of -20°C to + 50 °C and maximum humidity of 85 % may not be exceeded.
- Keep the operating manual supplied with the device for future reference.
- Protect the device against direct sunlight, heat, moisture and mechanical impacts.

12 Warranty

- The warranty period for faultless operation and compliance with the specified uncertainty of measurement is limited to 2 years from the date of purchase.
- Damage due to improper use, overload or operation under conditions that are outside the range of permitted ambient conditions are not covered by the warranty.
- Warranty covers only technical data that is specified with a tolerance range. Values or limits for which there are no tolerances specified are intended for information purposes only.

13 Recalibration

The manufactorer recommends recalibrating the device every 2 years. The device can be calibrated by the manufactorer service department or any other calibration specialist.

14 Maintenance

Ensure that the ventilation slots are not blocked. Otherwise, the device is maintenance-free.

15 Decommissioning and Disposal

15.1 Shutting down

- Ensure that all connected devices are switched off and disconnected from the power supply.
- Switch off the power analyzer.
- Disconnect the plug from the mains socket.
- Remove all connected devices.
- Secure the unit against inadvertent switching on.
- Ensure that the operating manual is kept near the device.

15.2 Recycling and disposal

Always adhere to the applicable statutory regulations for recycling and waste disposal.

15.3 Packaging

The following licence agreements have been entered into for the disposal of the packaging: ARA licence no. 1544 (Austria), DSD no. 2170305 (Germany).

15.4 Housing

• The housing is made in metal and can be recycled.

15.5 Electronic components

The electronic components including the power adapter, filter, plug-in modules and wires have a weight of approx. 1500 g and a volume of approx. 3000 cm³.

16 Technical Data

16.1 Technical data NORMA 4000

General technical data

Compact system	With 1 to 3 phases
	Continuous averages
Interface	Compatible to D5255
Housing	Metal housing
Weight	approx. 5 kg
Dimensions (W,H,D)	237 mm, 150 mm (3HU), 315 mm
Display	5.7", 320 x 240 pixel; background
	illumination and contrast adjustable
Operation	Membrane keyboard, with cursor, function
	keys and direct functions
Mains connection	85 264 V AC, 47 440 Hz, DC 120
	370 V, approx. 40 VA
	Euro plug with switch
Measuring terminals	4 mm guard sockets, 2 each per input; or
	screw terminals
	external shunt connection via BNC socket
Operating temperature range	+5 +35 °C

Ambient	Operating temperature range	+5 +35 °C
onditions	Storage temperature range	−20 +50 °C
	Climatic class	B2 (according to IEC 60654-1)
	Relative humidity	max. 85 %, noncondensing
conditions	Climatic class	B2 (according to IEC 60654-1)

Specifications

8 measuring range for U	0.3 - 1 - 3 - 10 - 30 - 100 - 300 - 1000 V
U _{peak}	2 x measuring range
Input impedance	2 Mohm // 20 pF
Common mode rejection	120 dB at 100 kHz

Current

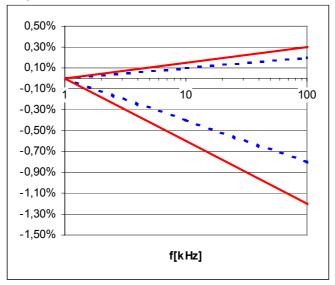
Voltage

Ambient

6 measuring ranges for I direct (10	0A) 30 – 100 mA – 0.3 – 1 – 3 – 10 A	
6 measuring ranges for I direct (20	(0A) $60 - 200 mA - 0.6 - 2 - 6 - 2 A$	
I _{peak}	2 x range	
Input impedance with integrated	d shunts (10A)	
Ranges	30, 100 mA: 1 ohm	
	0.3, 1 A: 0.1 ohm	
	3, 10 A: 0.01 ohm	
Input impedance with integrated shunts (20A)		
Ranges	6, 20 mA: 0.5 ohm	
	0.6, 2A: 0.05 ohm	
	6, 2 A: 0.005 ohm	
Measuring connection for shun	t or probe	
BNC socket	100 kOhm // 30pF	
D	30 – 100mV – 0.3 – 1 – 3 – 10 V	
Ranges		
Ranges Overload	max. 20 V _{eff}	

Limit of error	Power phase	PP30	PP40	PP42	PP50	PP51	PP52	PP54
	Limit of error	U	U	U	U	U	U	U
	reading	0,15%	0,10%	0,10%	0,05%	0,05%	0,05%	0,05%
	range	0,15%	0,10%	0,10%	0,05%	0,05%	0,05%	0,05%
	Limit of error	I	-	I	-			I
	reading	0,15%	0,10%	0,10%	0,05%	0,05%	0,05%	0,05%
	range	0,15%	0,10%	0,10%	0,05%	0,05%	0,05%	0,05%

Bandwidth


This data is valid for averages and the following reference conditions:

Ambient temperature 23 +- 0.5 °C, frequency 50 Hz, heat-up time of minimum 1 hour and incoming measuring signal.

Sample rate	Power Phase	PP30	PP40	PP42	PP50	PP51	PP52	PP54
	Sample rate	102kHz	341kHz	341kHz	1MHz	1MHz	341kHz	341kHz

Bandwidth	U direct	I via BNC	I direct measured
PP30	1 MHz	1 MHz	0,3 MHz
PP40	3 MHz	3 MHz	1 MHz
PP42	3 MHz	3 MHz	0,5 MHz
PP50	10 MHz	10 MHz	1 MHz
PP51	3 MHz	3 MHz	1 MHz
PP52	3 MHz	3 MHz	0,5 MHz
PP54	3 MHz	3 MHz	1 MHz

Diagram Bandwidth (limit of error) Power Phase PP40

For accurate measurements, harmonics over 1 MHz may reach maximum half of the range.

Angle error			
Angle entor	Power phase PP30	between U and I _{BNC}	between U and I _{direct}
	Angle error	0,1° + 0,1° /kHz	0,1° + 0,1° /kHz
	All other power phases		
	Angle error	0,005° + 0,005° /kHz	0,025° + 0,015° /kHz
Frequency and	Range	0.2Hz Sample rate (102	2kHz / 341kHz / 1MHz)
synchronisation	Measurement error ±0.01% rdg		
	Channel selection	all channels U/I, or external input	
	Low-pass filter	optionally integratable, with 3 different limit	
		frequencies	
	External Sync-input	Max. 50V, 0,2Hz to sampl	e rate
	Sync-output	Pulsed TTL signal 5V	
Data memory	Measured data memory	approx. 4 MB	
,			

Configuration	The current instrument settings can be stored as configurations in
memory	a non-volatile memory for subsequent reloading. Changes that are
	not saved in a configuration are lost when the device is switched
	off. Up to 15 user-defined configurations can be permanently
	stored under predefined names.

Interfaces	RS 232	RS 232 interface for firmware upload and data exchange with PC; the device can be connected to a printer through an external adapter
	GPIB	IEEE 488.2 / 1 MBit/s
	LAN	Ethernet / 10 MBits/s or 100 MBits/s
	USB	USB 2.0

Standards

Electrical safety	
EN 61010-1/ 2. edition 1000V CAT II	Degree of pollution 2,
(600V CAT III)	Protection class I
EN 61558	for transformer
EN 61010-2-031/032	for accessories
Electromagnetic compatibility	
Emission	IEC 61326-1, EN 50081-1, EN 55011
	class B
Immunity	IEC 61326-1 / annex A (industrial), EN
	50082-1
Max. input voltage	
for voltage inputs	Range 1000 V _{eff} , 2 kV _{peak}
for current inputs	Range 10 A _{eff} , 20 A _{peak}
Test voltages	
Mains input housing (earth connector)	1.5 KV a.c.
Mains connection measuring inputs	5.4 kV a.c.
Measuring inputs housing	3.3 kV a.c.
Measuring input measuring input	5.4 kV

16.2 Technical data NORMA 5000

General technical data

Compact system	With 1 to 6 phases
	Continuous averages
Interface	Compatible to D5255
Housing	Metal housing
Weight	approx. 7 kg
Dimensions (W,H,D)	447 mm, 150 mm (3HU), 315 mm
Display	5.7", 320 x 240 pixel; background
	illumination and contrast adjustable
Operation	Membrane keyboard, with cursor, function
	keys and direct functions
Mains connection	85 264 V AC, 47 440Hz, DC 120
	370 V, approx. 40 VA
	Euro plug with switch
Measuring terminals	4 mm guard sockets, 2 each per input; or
-	screw terminals
	external shunt connection via BNC socket

Ambient conditions

Operating temperature range	+5 +35 °C
Storage temperature range	−20 +50 °C
Climatic class	B2 (according to IEC 60654-1)
Relative humidity	max. 85 %, noncondensing

Specifications

Voltage

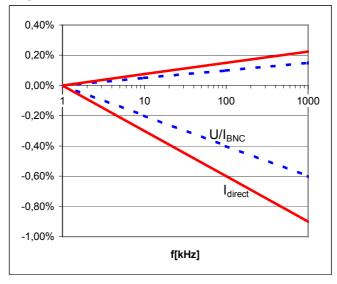
8 measuring range for U	0.3 - 1 - 3 - 10 - 30 - 100 - 300 - 300 - 100 - 300
	1000 V
U _{peak}	2 x measuring range
Input impedance	2 Mohm // 20 pF
Common mode rejection	120 dB at 100 kHz

Current

6 measuring ranges for I direct (10A)	30 – 100 mA – 0.3 – 1 – 3 – 10 A		
6 measuring ranges for I direct (20A)	60 – 200 mA – 0.6 – 2 – 6 – 20 A		
l _{peak}	2 x measuring range		
Input impedance with integrated shu	nts (10A)		
Ranges	30, 100 mA: 1 ohm		
	0.3, 1 A: 0.1 ohm		
	3, 10 A: 0.01 ohm		
Input impedance with integrated shunts (20A)			
Ranges	60, 200 mA: 0.5 ohm		
	0.6, 2 A: 0.05 ohm		
	6, 20 A: 0.005 ohm		
Measuring connection for shunt or probe			
BNC socket	100 kOhm // 30pF		
Ranges	30 – 100mV – 0.3 – 1 – 3 – 10 V		
Overload (bar)	max. 20 V _{eff}		
Common mode rejection	120 dB at 100 kHz		

Limit of error

Power phase	PP30	PP40	PP42	PP50	PP51	PP52
Limit of error	U	U	U	U	U	U
reading	0,15%	0,10%	0,10%	0,05%	0,05%	0,05%
range	0,15%	0,10%	0,10%	0,05%	0,05%	0,05%
Limit of error	I	-	-	-	I	I
reading	0,15%	0,10%	0,10%	0,05%	0,05%	0,05%
range	0,15%	0,10%	0,10%	0,05%	0,05%	0,05%


This data is valid for averages and the following reference conditions:

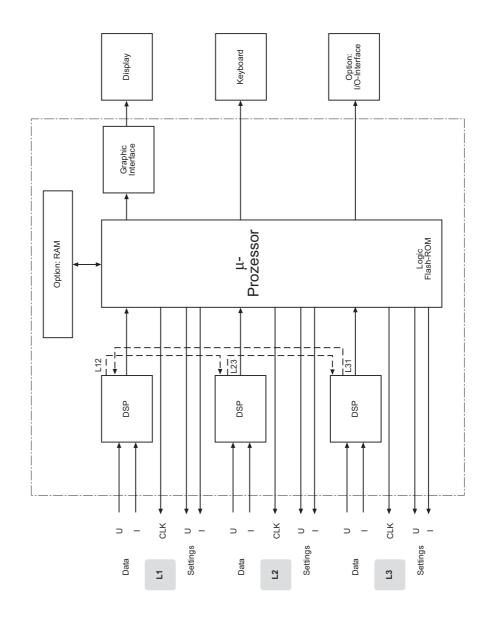
Ambient temperature 23 +- 0.5 °C, frequency 50 Hz, heat-up time of minimum 1 hour and incoming measuring signal.

Sample rate	Power Phase	PP30	PP40	PP42	PP50	PP51	PP52	PP54
•	Sample rate	102kHz	341kHz	341kHz	1MHz	1MHz	341kHz	341kHz
Bandwidth	Bandwidth L	J direct		l via B	NC	1	direct me	asured

Bandwidth	U direct	I via BNC	I direct measured
PP30	1 MHz	1 MHz	0,3 MHz
PP40	3 MHz	3 MHz	1 MHz
PP42	3 MHz	3 MHz	0,5 MHz
PP50	10 MHz	10 MHz	1 MHz
PP51	3 MHz	3 MHz	1 MHz
PP52	3 MHz	3 MHz	0,5 MHz
PP54	3 MHz	3 MHz	1 MHz

Diagram Bandwidth (limit of error) Power Phase PP50:

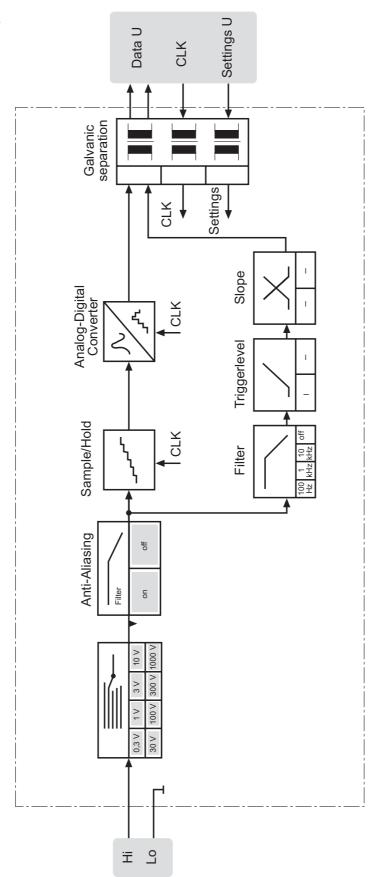
For accurate measurements, harmonics over 1 MHz may reach maximum half of the range.

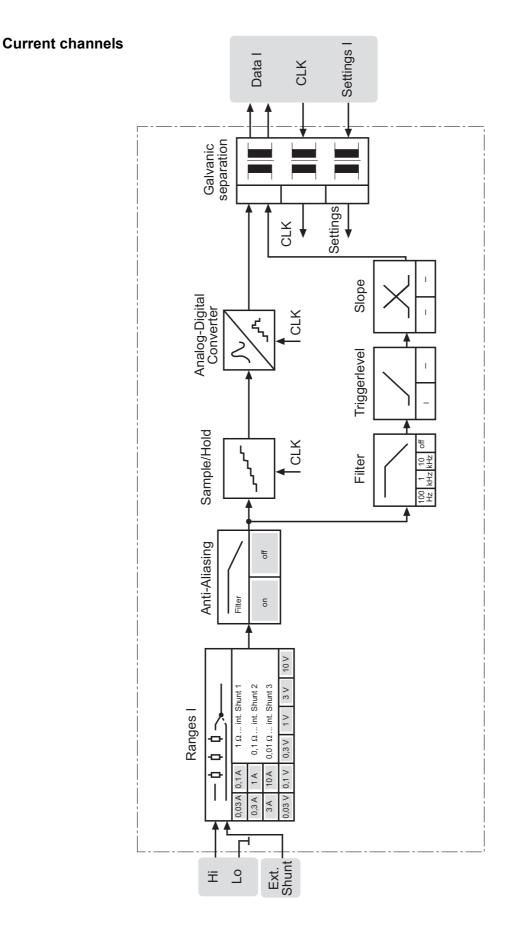

Angle error

Power phase PP30	between U and I _{BNC}	between U and I _{direct}
Angle error	0,1° + 0,1° /kHz	0,1° + 0,1° /kHz
All other power phases		
Angle error	0,005° + 0,005° /kHz	0,025° + 0,015° /kHz

Frequency and	Range	0.2Hz Sample rate (102kHz / 341kHz / 1MHz)
synchronisation	Measurement error	±0.01% rdg
	Channel selection	all channels U/I, or external input
	Low-pass filter	optionally integratable, with 3 different limit
		frequencies
	External Sync-input	Max. 50V, 0,2Hz to sample rate
	Sync-output	Pulsed TTL signal 5V
Data mamary	Measured data memory	approx 4 MB

Data memory


Configuration memory	a non-volatile monot saved in a co	emory for subsec onfiguration are l er-defined configu	an be stored as configurations in quent reloading. Changes that are ost when the device is switched urations can be permanently
Interfaces	RS 232		r firmware upload and data exchange
			can be connected to a printer through
		an external adapter	
	GPIB	IEEE 488.2 / 1 MBi	
	LAN	Ethernet / 10 MBits	/s or 100 MBits/s
	USB	USB2.0	
Standards	Electrical safety		
	EN 61010-1/ 2. editi	on 1000V CAT II	Degree of pollution 2,
	(600V CAT III)		Protection class I
	EN 61558		for transformer
	EN 61010-2-031/03		for accessories
	Electromagnetic c	ompatibility	
	Emission		IEC 61326-1, EN 50081-1, EN 55011
			class B
	Immunity		IEC 61326-1 / annex A (industrial), EN
			50082-1
	Max. input voltage		
	for voltage inputs		Range 1000 V _{eff} , 2 kV _{peak}
	for current inputs		Range 10 A _{eff} , 20 A _{peak}
	Test voltages		
	Mains input housing		1.5 KV a.c.
	Mains connection m		5.4 kV a.c.
	Measuring inputs ho		3.3 kV a.c.
	Measuring input me	asuring input	5.4 kV



16.3 Block diagrams

Overview

Voltage channels

17 Service and Accessories

17.1 Instrument

Product	Description/technical specifications	Prod. no.
NORMA 4000 BU 43	Basic unit 2/3 19", with power adapter, 5.7" colour display, back lighted RS 232 interface for firmware upload, catering for 3 power phases and optional	EA 1430 Z
NORMA 5000 BU 56	extensions Basic unit 19", with power adapter, 5.7" colour display, back lighted RS 232 interface for firmware upload, catering for 6 power phases and optional extensions	EA 1560 Z
PP 30	Power phase for voltage, current (10A) and power measurement, bandwidth 1 MHz, sampling rate 102kHz limit of error ±0.15% measured value and ±0.15% range	EA 1300 Z
PP 40	Power phase for voltage, current (10A) and power measurement, bandwidth 3 MHz, sampling rate 1/3 MHz limit of error ±0.1% measured value and ±0.1% range	EA 1400 Z
PP 42	Power phase for voltage, current (20A) and power measurement, bandwidth 3 MHz, sampling rate 1/3 MHz limit of error ±0.1% measured value and ±0.1% range	EA 1420 Z
PP 50	Power phase for voltage, current (10A) and power measurement, bandwidth 10 MHz, sampling rate 1 MHz limit of error ±0.05% measured value and ±0.05% range	EA 1500 Z
PP 52	Power phase for voltage, current (20A) and power measurement, bandwidth 3 MHz, sampling rate 1/3 MHz limit of error ±0.05% measured value and ±0.05% range	EA 1520 Z
PP 54	Power phase for voltage, current (10A) and power measurement, bandwidth 3 MHz, sampling rate 1/3 MHz limit of error ±0.05% measured value and ±0.05% range	EA 1540 Z

Optional equipment

Product	Description/technical	Prod. no.
	specifications	
IF3 interface USB	USB2.0 and Ethernet	EA 1001 Z
IF2 interface IEEE488	IEEE 488 and Ethernet	EA 1002 Z
PI1 process interface	8 analog/pulse inputs,	EA 1003 Z
	4 analog outputs	
Internal printer	Thermal printer for NORMA 5000	EA 1006 Z
PC printer cable	RS-232 Centronics, 1.8 m	EA 1007 Z
Additional memory	128 MB additional memory for	EA 1010 Z
	NORMA 5000	
Rs232 cable	1,5m length 1:1 connected	EA 1011Z
LAN cable	2m length, crossed	EA 1012Z
USB cable	1,5m length, A to B plug	EA 1013Z

Power Analyzer NORMA 4000, NORMA 5000 EO1111G REV G

Analyzer

Product	Description/technical specifications	Prod. no.
MC1	Measuring lead set for power phase, cable	EA 1030 Z
	length 1.5 m	
Planar Shunt 32	32 A	EA 1032 Z
	10 mohm 0-1 MHz	
Shunt 100	Scale 30 A / approx. 30 mV,	A641401100
Shunt 300	300 A, 0.2 mohm 0-1 MHz	EA 1033 Z
Shunt 1000	1000 A, 0.1 mohm 0-0.5 MHz	EA 1034 Z
Shunt 1500	1500 A, 0.1 mohm 0-0.2 MHz	EA 1035 Z
Shunt 450	450 A, increased measuring voltage	EA 1036 Z
	0.5 mohm 0-0.5 MHz	
MCP	Measuring lead for planar shunt, 1.5 m	EA 1038 Z
MCS	Measuring lead for shunt, 1.5 m	EA 1039 Z
IT 150-S	Transducer 150 A / 0.2 A	EA 1045 Z
	DC 100kHz	
IT 600-S	Transducer 600 A / 0.4 A	EA 1046 Z
	DC 100 kHz	
LT 3	Power unit for up to 3 IT transducers	EA 1047 Z
RR 3030	Lemflex 30/300/3000A with BNC plug	EA 1051 Z
	10 Hz-50 kHz	
Probe PR1235X	Passive probe 1000 / 1 A	EA 1052 Z
	30 Hz 10 kHz	
Probe PR201	Passive probe 200 / 0,2 A	EA 1053Z
ACI	40 Hz 10 kHz	
SP	3-phase star point adapter	EA 1059 Z
Bag	Carrier bag for NORMA 4000	EA 1060 Z

17.2 Accessories

Accessories

Software

Service

Product	Description/technical specifications	Prod. no.
PowerVIEW	Basic PC software package for numerical	EA 1090 Z
Basic	display	
PowerVIEW	Plug-in "Motor" supports the motor	EA 1091 Z
Motor	process interface	
PowerVIEW	Plug-in "Storage"	EA 1092 Z
Storage	Data memory functions, DSO	
PowerVIEW	Plug-in "Harmonic"	EA 1093 Z
Harmonic	(FFT, Harmonic analysis)	
PowerVIEW	Software package for the design of	EA 1094 Z
Developer	customer applications; training and support	
	are available on request	

17.3 Service

General

The power analyzer may only be serviced by specialised service workshops authorised by LEM Norma.

Product	Description/technical specifications	Prod. no.
Cal BU	Recalibration of the first power phase of	EA 1071 Z
	the analyzer, including LNO test report	
Cal PP	Recalibration of each of the other power	EA 1072 Z
	phases, including LNO test report	
Cal 500	Recalibration of a shunt of up to 500A	EA 1075 Z
Cal 1500	Recalibration of a shunt of up to 1500A	EA 1076 Z

Printed in Austria / Gedruckt in Österreich / Imprimé en Autriche / Impreso en Austria / Stampato in Austria

LEM NORMA GmbH

Liebermannstraße F01, CAMPUS 21 A-2345 Brunn am Gebirge AUSTRIA Tel.: +43(0)2236-691-0 Fax: +43(0)2236-691-415 E-Mail: Ino@lem.com Internet: www.lem.com

EO1111G REV G

Right to change specification reserved / Technische Änderungen vorbehalten / Sous réserve de modifications / Nos reservamos el derecho a modificaciones técnicas sin previo aviso / Tutti i diritti di variazione riservati Distributor / Vertragshändler / Distributeur / Distribuidor / Distributore